A gradient-free distributed optimization method for convex sum of nonconvex cost functions
This article presents a special type of distributed optimization problems, where the summation of agents' local cost functions (i.e., global cost function) is convex, but each individual can be nonconvex. Unlike most distributed optimization algorithms by taking the advantages of gradient, the...
Main Authors: | Pang, Yipeng, Hu, Guoqiang |
---|---|
其他作者: | School of Electrical and Electronic Engineering |
格式: | Journal Article |
语言: | English |
出版: |
2023
|
主题: | |
在线阅读: | https://hdl.handle.net/10356/170517 |
相似书籍
-
Gradient-free distributed optimization with exact convergence
由: Pang, Yipeng, et al.
出版: (2022) -
Randomized gradient-free distributed online optimization via a dynamic regret analysis
由: Pang, Yipeng, et al.
出版: (2023) -
Exact convergence of gradient-free distributed optimization method in a multi-agent system
由: Pang, Yipeng, et al.
出版: (2020) -
Nash equilibrium seeking in N-coalition games via a gradient-free method
由: Pang, Yipeng, et al.
出版: (2022) -
Distributed gradient-free and projection-free algorithm for stochastic constrained optimization
由: Jie Hou, et al.
出版: (2024-05-01)