Summary: | Neon (Ne), as the fifth most abundant element in the universe, is rare to react with other elements by forming stable solid compounds. It is well known that pressure is a powerful tool to generate the compounds that are inaccessible at ambient pressure. In this work, we performed structure-searching simulations to examine stable compounds of Ne and H2O at a wide pressure range of 0-600 GPa. Our simulations identified two phases of H2ONe and H2ONe2 under high pressure. By employing chemical-bonding analysis, interestingly, we found that Ne-O interactions are comparable in strength to that of conventional hydrogen bond. Moreover, our molecular dynamic simulations indicate the diffusion behavior of hydrogen atoms within a fixed Ne-O lattice framework of H2ONe2 at high pressure and high temperature. These results provide the implications for the possible existence of pressure-stabilized H2ONe and H2ONe2 compounds viable in a variety of astronomical objects.
|