MalariaSED: a deep learning framework to decipher the regulatory contributions of noncoding variants in malaria parasites

Malaria remains one of the deadliest infectious diseases. Transcriptional regulation effects of noncoding variants in this unusual genome of malaria parasites remain elusive. We developed a sequence-based, ab initio deep learning framework, MalariaSED, for predicting chromatin profiles in malaria pa...

Full description

Bibliographic Details
Main Authors: Wang, Chengqi, Dong, Yibo, Li, Chang, Oberstaller, Jenna, Zhang, Min, Gibbons, Justin, Pires, Camilla Valente, Xiao, Mianli, Zhu, Lei, Jiang, Rays H. Y., Kim, Kami, Miao, Jun, Otto, Thomas D., Cui, Liwang, Adams, John H., Liu, Xiaoming
Other Authors: School of Biological Sciences
Format: Journal Article
Language:English
Published: 2024
Subjects:
Online Access:https://hdl.handle.net/10356/173875
_version_ 1811686634706436096
author Wang, Chengqi
Dong, Yibo
Li, Chang
Oberstaller, Jenna
Zhang, Min
Gibbons, Justin
Pires, Camilla Valente
Xiao, Mianli
Zhu, Lei
Jiang, Rays H. Y.
Kim, Kami
Miao, Jun
Otto, Thomas D.
Cui, Liwang
Adams, John H.
Liu, Xiaoming
author2 School of Biological Sciences
author_facet School of Biological Sciences
Wang, Chengqi
Dong, Yibo
Li, Chang
Oberstaller, Jenna
Zhang, Min
Gibbons, Justin
Pires, Camilla Valente
Xiao, Mianli
Zhu, Lei
Jiang, Rays H. Y.
Kim, Kami
Miao, Jun
Otto, Thomas D.
Cui, Liwang
Adams, John H.
Liu, Xiaoming
author_sort Wang, Chengqi
collection NTU
description Malaria remains one of the deadliest infectious diseases. Transcriptional regulation effects of noncoding variants in this unusual genome of malaria parasites remain elusive. We developed a sequence-based, ab initio deep learning framework, MalariaSED, for predicting chromatin profiles in malaria parasites. The MalariaSED performance was validated by published ChIP-qPCR and TF motifs results. Applying MalariaSED to ~ 1.3 million variants shows that geographically differentiated noncoding variants are associated with parasite invasion and drug resistance. Further analysis reveals chromatin accessibility changes at Plasmodium falciparum rings are partly associated with artemisinin resistance. MalariaSED illuminates the potential functional roles of noncoding variants in malaria parasites.
first_indexed 2024-10-01T05:03:32Z
format Journal Article
id ntu-10356/173875
institution Nanyang Technological University
language English
last_indexed 2024-10-01T05:03:32Z
publishDate 2024
record_format dspace
spelling ntu-10356/1738752024-03-04T15:32:21Z MalariaSED: a deep learning framework to decipher the regulatory contributions of noncoding variants in malaria parasites Wang, Chengqi Dong, Yibo Li, Chang Oberstaller, Jenna Zhang, Min Gibbons, Justin Pires, Camilla Valente Xiao, Mianli Zhu, Lei Jiang, Rays H. Y. Kim, Kami Miao, Jun Otto, Thomas D. Cui, Liwang Adams, John H. Liu, Xiaoming School of Biological Sciences Medicine, Health and Life Sciences Malaria Parasites Malaria remains one of the deadliest infectious diseases. Transcriptional regulation effects of noncoding variants in this unusual genome of malaria parasites remain elusive. We developed a sequence-based, ab initio deep learning framework, MalariaSED, for predicting chromatin profiles in malaria parasites. The MalariaSED performance was validated by published ChIP-qPCR and TF motifs results. Applying MalariaSED to ~ 1.3 million variants shows that geographically differentiated noncoding variants are associated with parasite invasion and drug resistance. Further analysis reveals chromatin accessibility changes at Plasmodium falciparum rings are partly associated with artemisinin resistance. MalariaSED illuminates the potential functional roles of noncoding variants in malaria parasites. Published version This work was supported by the National Institutes of Health grant R01 AI117017 (J.H.A.) and U19 AI089672 (C.L.). This work was supported by the internal award of the College of Public Health at the University of South Florida. 2024-03-04T07:18:40Z 2024-03-04T07:18:40Z 2023 Journal Article Wang, C., Dong, Y., Li, C., Oberstaller, J., Zhang, M., Gibbons, J., Pires, C. V., Xiao, M., Zhu, L., Jiang, R. H. Y., Kim, K., Miao, J., Otto, T. D., Cui, L., Adams, J. H. & Liu, X. (2023). MalariaSED: a deep learning framework to decipher the regulatory contributions of noncoding variants in malaria parasites. Genome Biology, 24(1). https://dx.doi.org/10.1186/s13059-023-03063-z 1474-760X https://hdl.handle.net/10356/173875 10.1186/s13059-023-03063-z 24 2-s2.0-85174420696 1 24 en Genome Biology © The Author(s) 2023. Open Access. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http:// creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publi cdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data. application/pdf
spellingShingle Medicine, Health and Life Sciences
Malaria
Parasites
Wang, Chengqi
Dong, Yibo
Li, Chang
Oberstaller, Jenna
Zhang, Min
Gibbons, Justin
Pires, Camilla Valente
Xiao, Mianli
Zhu, Lei
Jiang, Rays H. Y.
Kim, Kami
Miao, Jun
Otto, Thomas D.
Cui, Liwang
Adams, John H.
Liu, Xiaoming
MalariaSED: a deep learning framework to decipher the regulatory contributions of noncoding variants in malaria parasites
title MalariaSED: a deep learning framework to decipher the regulatory contributions of noncoding variants in malaria parasites
title_full MalariaSED: a deep learning framework to decipher the regulatory contributions of noncoding variants in malaria parasites
title_fullStr MalariaSED: a deep learning framework to decipher the regulatory contributions of noncoding variants in malaria parasites
title_full_unstemmed MalariaSED: a deep learning framework to decipher the regulatory contributions of noncoding variants in malaria parasites
title_short MalariaSED: a deep learning framework to decipher the regulatory contributions of noncoding variants in malaria parasites
title_sort malariased a deep learning framework to decipher the regulatory contributions of noncoding variants in malaria parasites
topic Medicine, Health and Life Sciences
Malaria
Parasites
url https://hdl.handle.net/10356/173875
work_keys_str_mv AT wangchengqi malariasedadeeplearningframeworktodeciphertheregulatorycontributionsofnoncodingvariantsinmalariaparasites
AT dongyibo malariasedadeeplearningframeworktodeciphertheregulatorycontributionsofnoncodingvariantsinmalariaparasites
AT lichang malariasedadeeplearningframeworktodeciphertheregulatorycontributionsofnoncodingvariantsinmalariaparasites
AT oberstallerjenna malariasedadeeplearningframeworktodeciphertheregulatorycontributionsofnoncodingvariantsinmalariaparasites
AT zhangmin malariasedadeeplearningframeworktodeciphertheregulatorycontributionsofnoncodingvariantsinmalariaparasites
AT gibbonsjustin malariasedadeeplearningframeworktodeciphertheregulatorycontributionsofnoncodingvariantsinmalariaparasites
AT pirescamillavalente malariasedadeeplearningframeworktodeciphertheregulatorycontributionsofnoncodingvariantsinmalariaparasites
AT xiaomianli malariasedadeeplearningframeworktodeciphertheregulatorycontributionsofnoncodingvariantsinmalariaparasites
AT zhulei malariasedadeeplearningframeworktodeciphertheregulatorycontributionsofnoncodingvariantsinmalariaparasites
AT jiangrayshy malariasedadeeplearningframeworktodeciphertheregulatorycontributionsofnoncodingvariantsinmalariaparasites
AT kimkami malariasedadeeplearningframeworktodeciphertheregulatorycontributionsofnoncodingvariantsinmalariaparasites
AT miaojun malariasedadeeplearningframeworktodeciphertheregulatorycontributionsofnoncodingvariantsinmalariaparasites
AT ottothomasd malariasedadeeplearningframeworktodeciphertheregulatorycontributionsofnoncodingvariantsinmalariaparasites
AT cuiliwang malariasedadeeplearningframeworktodeciphertheregulatorycontributionsofnoncodingvariantsinmalariaparasites
AT adamsjohnh malariasedadeeplearningframeworktodeciphertheregulatorycontributionsofnoncodingvariantsinmalariaparasites
AT liuxiaoming malariasedadeeplearningframeworktodeciphertheregulatorycontributionsofnoncodingvariantsinmalariaparasites