Online dynamic ensemble deep random vector functional link neural network for forecasting
This paper proposes a three-stage online deep learning model for time series based on the ensemble deep random vector functional link (edRVFL). The edRVFL stacks multiple randomized layers to enhance the single-layer RVFL's representation ability. Each hidden layer's representation is util...
Huvudupphovsmän: | Gao, Ruobin, Li, Ruilin, Hu, Minghui, Suganthan, P. N., Yuen, Kum Fai |
---|---|
Övriga upphovsmän: | School of Electrical and Electronic Engineering |
Materialtyp: | Journal Article |
Språk: | English |
Publicerad: |
2024
|
Ämnen: | |
Länkar: | https://hdl.handle.net/10356/174180 |
Liknande verk
-
An enhanced ensemble deep random vector functional link network for driver fatigue recognition
av: Li, Ruilin, et al.
Publicerad: (2024) -
A spectral-ensemble deep random vector functional link network for passive brain–computer interface
av: Li, Ruilin, et al.
Publicerad: (2024) -
Self-distillation for randomized neural networks
av: Hu, Minghui, et al.
Publicerad: (2024) -
Representation learning using deep random vector functional link networks for clustering
av: Hu, Minghui, et al.
Publicerad: (2022) -
Random vector functional link neural network based ensemble deep learning
av: Shi, Qiushi, et al.
Publicerad: (2022)