Learning deep networks for video object segmentation

The Segment Anything Model (SAM) is an image segmentation model which has gained significant traction due to its powerful zero shot transfer performance on unseen data distributions as well as application to downstream tasks. It has a broad support of input methods such as point, box, and automa...

Full description

Bibliographic Details
Main Author: Lim, Jun Rong
Other Authors: Lin Guosheng
Format: Final Year Project (FYP)
Language:English
Published: Nanyang Technological University 2024
Subjects:
Online Access:https://hdl.handle.net/10356/175018
Description
Summary:The Segment Anything Model (SAM) is an image segmentation model which has gained significant traction due to its powerful zero shot transfer performance on unseen data distributions as well as application to downstream tasks. It has a broad support of input methods such as point, box, and automatic mask generation. Traditional Video Object Segmentation (VOS) methods require strongly labelled training data consisting of densely annotated pixel level segmentation mask, which is both expensive and time-consuming to obtain. We explore using only weakly labelled bounding box annotations to turn the training process into a weakly supervised mode. In this paper, we present a novel method BoxSAM which combines the Segment Anything Model (SAM) with a Single object tracker and Monocular Depth mapping to tackle the task of Video Object Segmentation (VOS). BoxSAM leverages a robust bounding box based object tracker and point augmentation techniques from attention maps to generate an object mask, which will then be deconflicted using depth maps. The proposed method achieves 81.8 on DAVIS 17 and 70.5 on Youtube-VOS 2018 which compares favourably to other methods that were not trained on video segmentation data.