DRAC 2022: a public benchmark for diabetic retinopathy analysis on ultra-wide optical coherence tomography angiography images

We described a challenge named "DRAC - Diabetic Retinopathy Analysis Challenge" in conjunction with the 25th International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI 2022). Within this challenge, we provided the DRAC datset, an ultra-wide optical coher...

Full description

Bibliographic Details
Main Authors: Qian, Bo, Chen, Hao, Wang, Xiangning, Guan, Zhouyu, Li, Tingyao, Jin, Yixiao, Wu, Yilan, Wen, Yang, Che, Haoxuan, Kwon, Gitaek, Kim, Jaeyoung, Choi, Sungjin, Shin, Seoyoung, Krause, Felix, Unterdechler, Markus, Hou, Junlin, Feng, Rui, Li, Yihao, El Habib Daho, Mostafa, Yang, Dawei, Wu, Qiang, Zhang, Ping, Yang, Xiaokang, Cai, Yiyu, Tan, Gavin Siew Wei, Cheung, Carol Y., Jia, Weiping, Li, Huating, Tham, Yih Chung, Wong, Tien Yin, Sheng, Bin
Other Authors: School of Mechanical and Aerospace Engineering
Format: Journal Article
Language:English
Published: 2024
Subjects:
Online Access:https://hdl.handle.net/10356/178399
_version_ 1826117179917991936
author Qian, Bo
Chen, Hao
Wang, Xiangning
Guan, Zhouyu
Li, Tingyao
Jin, Yixiao
Wu, Yilan
Wen, Yang
Che, Haoxuan
Kwon, Gitaek
Kim, Jaeyoung
Choi, Sungjin
Shin, Seoyoung
Krause, Felix
Unterdechler, Markus
Hou, Junlin
Feng, Rui
Li, Yihao
El Habib Daho, Mostafa
Yang, Dawei
Wu, Qiang
Zhang, Ping
Yang, Xiaokang
Cai, Yiyu
Tan, Gavin Siew Wei
Cheung, Carol Y.
Jia, Weiping
Li, Huating
Tham, Yih Chung
Wong, Tien Yin
Sheng, Bin
author2 School of Mechanical and Aerospace Engineering
author_facet School of Mechanical and Aerospace Engineering
Qian, Bo
Chen, Hao
Wang, Xiangning
Guan, Zhouyu
Li, Tingyao
Jin, Yixiao
Wu, Yilan
Wen, Yang
Che, Haoxuan
Kwon, Gitaek
Kim, Jaeyoung
Choi, Sungjin
Shin, Seoyoung
Krause, Felix
Unterdechler, Markus
Hou, Junlin
Feng, Rui
Li, Yihao
El Habib Daho, Mostafa
Yang, Dawei
Wu, Qiang
Zhang, Ping
Yang, Xiaokang
Cai, Yiyu
Tan, Gavin Siew Wei
Cheung, Carol Y.
Jia, Weiping
Li, Huating
Tham, Yih Chung
Wong, Tien Yin
Sheng, Bin
author_sort Qian, Bo
collection NTU
description We described a challenge named "DRAC - Diabetic Retinopathy Analysis Challenge" in conjunction with the 25th International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI 2022). Within this challenge, we provided the DRAC datset, an ultra-wide optical coherence tomography angiography (UW-OCTA) dataset (1,103 images), addressing three primary clinical tasks: diabetic retinopathy (DR) lesion segmentation, image quality assessment, and DR grading. The scientific community responded positively to the challenge, with 11, 12, and 13 teams submitting different solutions for these three tasks, respectively. This paper presents a concise summary and analysis of the top-performing solutions and results across all challenge tasks. These solutions could provide practical guidance for developing accurate classification and segmentation models for image quality assessment and DR diagnosis using UW-OCTA images, potentially improving the diagnostic capabilities of healthcare professionals. The dataset has been released to support the development of computer-aided diagnostic systems for DR evaluation.
first_indexed 2024-10-01T04:23:25Z
format Journal Article
id ntu-10356/178399
institution Nanyang Technological University
language English
last_indexed 2024-10-01T04:23:25Z
publishDate 2024
record_format dspace
spelling ntu-10356/1783992024-06-18T04:57:57Z DRAC 2022: a public benchmark for diabetic retinopathy analysis on ultra-wide optical coherence tomography angiography images Qian, Bo Chen, Hao Wang, Xiangning Guan, Zhouyu Li, Tingyao Jin, Yixiao Wu, Yilan Wen, Yang Che, Haoxuan Kwon, Gitaek Kim, Jaeyoung Choi, Sungjin Shin, Seoyoung Krause, Felix Unterdechler, Markus Hou, Junlin Feng, Rui Li, Yihao El Habib Daho, Mostafa Yang, Dawei Wu, Qiang Zhang, Ping Yang, Xiaokang Cai, Yiyu Tan, Gavin Siew Wei Cheung, Carol Y. Jia, Weiping Li, Huating Tham, Yih Chung Wong, Tien Yin Sheng, Bin School of Mechanical and Aerospace Engineering Engineering Diabetic retinopathy Medical image computing We described a challenge named "DRAC - Diabetic Retinopathy Analysis Challenge" in conjunction with the 25th International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI 2022). Within this challenge, we provided the DRAC datset, an ultra-wide optical coherence tomography angiography (UW-OCTA) dataset (1,103 images), addressing three primary clinical tasks: diabetic retinopathy (DR) lesion segmentation, image quality assessment, and DR grading. The scientific community responded positively to the challenge, with 11, 12, and 13 teams submitting different solutions for these three tasks, respectively. This paper presents a concise summary and analysis of the top-performing solutions and results across all challenge tasks. These solutions could provide practical guidance for developing accurate classification and segmentation models for image quality assessment and DR diagnosis using UW-OCTA images, potentially improving the diagnostic capabilities of healthcare professionals. The dataset has been released to support the development of computer-aided diagnostic systems for DR evaluation. Published version This study was supported by the National Key Research and Development Program of China (2022YFC2502800, 2022YFA1004804, and 2022YFC2407000), the Shanghai Municipal Key Clinical Specialty, Shanghai Research Center for Endocrine and Metabolic Diseases (2022ZZ01002) and the Chinese Academy of Engineering (2022-XY-08), National Natural Science Foundation of China (823881007, 62272298, 82270907, 82022012, and 62077037), Innovative research team of high-level local universities in Shanghai (SHSMUZDCX20212700), the Interdisciplinary Program of Shanghai Jiao Tong University (YG2023LC11, YG2022ZD007, and YG2022QN089), and the College-level Project Fund of Shanghai Sixth People’s Hospital (ynlc201909). 2024-06-18T04:57:57Z 2024-06-18T04:57:57Z 2024 Journal Article Qian, B., Chen, H., Wang, X., Guan, Z., Li, T., Jin, Y., Wu, Y., Wen, Y., Che, H., Kwon, G., Kim, J., Choi, S., Shin, S., Krause, F., Unterdechler, M., Hou, J., Feng, R., Li, Y., El Habib Daho, M., ...Sheng, B. (2024). DRAC 2022: a public benchmark for diabetic retinopathy analysis on ultra-wide optical coherence tomography angiography images. Patterns, 5(3), 100929-. https://dx.doi.org/10.1016/j.patter.2024.100929 2666-3899 https://hdl.handle.net/10356/178399 10.1016/j.patter.2024.100929 38487802 2-s2.0-85186505367 3 5 100929 en Patterns © 2024 The Author(s). This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). application/pdf
spellingShingle Engineering
Diabetic retinopathy
Medical image computing
Qian, Bo
Chen, Hao
Wang, Xiangning
Guan, Zhouyu
Li, Tingyao
Jin, Yixiao
Wu, Yilan
Wen, Yang
Che, Haoxuan
Kwon, Gitaek
Kim, Jaeyoung
Choi, Sungjin
Shin, Seoyoung
Krause, Felix
Unterdechler, Markus
Hou, Junlin
Feng, Rui
Li, Yihao
El Habib Daho, Mostafa
Yang, Dawei
Wu, Qiang
Zhang, Ping
Yang, Xiaokang
Cai, Yiyu
Tan, Gavin Siew Wei
Cheung, Carol Y.
Jia, Weiping
Li, Huating
Tham, Yih Chung
Wong, Tien Yin
Sheng, Bin
DRAC 2022: a public benchmark for diabetic retinopathy analysis on ultra-wide optical coherence tomography angiography images
title DRAC 2022: a public benchmark for diabetic retinopathy analysis on ultra-wide optical coherence tomography angiography images
title_full DRAC 2022: a public benchmark for diabetic retinopathy analysis on ultra-wide optical coherence tomography angiography images
title_fullStr DRAC 2022: a public benchmark for diabetic retinopathy analysis on ultra-wide optical coherence tomography angiography images
title_full_unstemmed DRAC 2022: a public benchmark for diabetic retinopathy analysis on ultra-wide optical coherence tomography angiography images
title_short DRAC 2022: a public benchmark for diabetic retinopathy analysis on ultra-wide optical coherence tomography angiography images
title_sort drac 2022 a public benchmark for diabetic retinopathy analysis on ultra wide optical coherence tomography angiography images
topic Engineering
Diabetic retinopathy
Medical image computing
url https://hdl.handle.net/10356/178399
work_keys_str_mv AT qianbo drac2022apublicbenchmarkfordiabeticretinopathyanalysisonultrawideopticalcoherencetomographyangiographyimages
AT chenhao drac2022apublicbenchmarkfordiabeticretinopathyanalysisonultrawideopticalcoherencetomographyangiographyimages
AT wangxiangning drac2022apublicbenchmarkfordiabeticretinopathyanalysisonultrawideopticalcoherencetomographyangiographyimages
AT guanzhouyu drac2022apublicbenchmarkfordiabeticretinopathyanalysisonultrawideopticalcoherencetomographyangiographyimages
AT litingyao drac2022apublicbenchmarkfordiabeticretinopathyanalysisonultrawideopticalcoherencetomographyangiographyimages
AT jinyixiao drac2022apublicbenchmarkfordiabeticretinopathyanalysisonultrawideopticalcoherencetomographyangiographyimages
AT wuyilan drac2022apublicbenchmarkfordiabeticretinopathyanalysisonultrawideopticalcoherencetomographyangiographyimages
AT wenyang drac2022apublicbenchmarkfordiabeticretinopathyanalysisonultrawideopticalcoherencetomographyangiographyimages
AT chehaoxuan drac2022apublicbenchmarkfordiabeticretinopathyanalysisonultrawideopticalcoherencetomographyangiographyimages
AT kwongitaek drac2022apublicbenchmarkfordiabeticretinopathyanalysisonultrawideopticalcoherencetomographyangiographyimages
AT kimjaeyoung drac2022apublicbenchmarkfordiabeticretinopathyanalysisonultrawideopticalcoherencetomographyangiographyimages
AT choisungjin drac2022apublicbenchmarkfordiabeticretinopathyanalysisonultrawideopticalcoherencetomographyangiographyimages
AT shinseoyoung drac2022apublicbenchmarkfordiabeticretinopathyanalysisonultrawideopticalcoherencetomographyangiographyimages
AT krausefelix drac2022apublicbenchmarkfordiabeticretinopathyanalysisonultrawideopticalcoherencetomographyangiographyimages
AT unterdechlermarkus drac2022apublicbenchmarkfordiabeticretinopathyanalysisonultrawideopticalcoherencetomographyangiographyimages
AT houjunlin drac2022apublicbenchmarkfordiabeticretinopathyanalysisonultrawideopticalcoherencetomographyangiographyimages
AT fengrui drac2022apublicbenchmarkfordiabeticretinopathyanalysisonultrawideopticalcoherencetomographyangiographyimages
AT liyihao drac2022apublicbenchmarkfordiabeticretinopathyanalysisonultrawideopticalcoherencetomographyangiographyimages
AT elhabibdahomostafa drac2022apublicbenchmarkfordiabeticretinopathyanalysisonultrawideopticalcoherencetomographyangiographyimages
AT yangdawei drac2022apublicbenchmarkfordiabeticretinopathyanalysisonultrawideopticalcoherencetomographyangiographyimages
AT wuqiang drac2022apublicbenchmarkfordiabeticretinopathyanalysisonultrawideopticalcoherencetomographyangiographyimages
AT zhangping drac2022apublicbenchmarkfordiabeticretinopathyanalysisonultrawideopticalcoherencetomographyangiographyimages
AT yangxiaokang drac2022apublicbenchmarkfordiabeticretinopathyanalysisonultrawideopticalcoherencetomographyangiographyimages
AT caiyiyu drac2022apublicbenchmarkfordiabeticretinopathyanalysisonultrawideopticalcoherencetomographyangiographyimages
AT tangavinsiewwei drac2022apublicbenchmarkfordiabeticretinopathyanalysisonultrawideopticalcoherencetomographyangiographyimages
AT cheungcaroly drac2022apublicbenchmarkfordiabeticretinopathyanalysisonultrawideopticalcoherencetomographyangiographyimages
AT jiaweiping drac2022apublicbenchmarkfordiabeticretinopathyanalysisonultrawideopticalcoherencetomographyangiographyimages
AT lihuating drac2022apublicbenchmarkfordiabeticretinopathyanalysisonultrawideopticalcoherencetomographyangiographyimages
AT thamyihchung drac2022apublicbenchmarkfordiabeticretinopathyanalysisonultrawideopticalcoherencetomographyangiographyimages
AT wongtienyin drac2022apublicbenchmarkfordiabeticretinopathyanalysisonultrawideopticalcoherencetomographyangiographyimages
AT shengbin drac2022apublicbenchmarkfordiabeticretinopathyanalysisonultrawideopticalcoherencetomographyangiographyimages