Streamlining DNN obfuscation to defend against model stealing attacks
Side-channel-based Deep Neural Network (DNN) model stealing has become a major concern with the advent of learning-based attacks. In respond to this threat, defence mechanisms have been presented to obfuscate the DNN execution, making it difficult to infer the correlation between side-channel inform...
Prif Awduron: | Sun, Yidan, Lam, Siew-Kei, Jiang, Guiyuan, He, Peilan |
---|---|
Awduron Eraill: | College of Computing and Data Science |
Fformat: | Conference Paper |
Iaith: | English |
Cyhoeddwyd: |
2024
|
Pynciau: | |
Mynediad Ar-lein: | https://hdl.handle.net/10356/178547 https://ieee-cas.org/event/conference/2024-ieee-international-symposium-circuits-and-systems |
Eitemau Tebyg
-
Layer sequence extraction of optimized DNNs using side-channel information leaks
gan: Sun, Yidan, et al.
Cyhoeddwyd: (2024) -
Strategic safeguarding: A game theoretic approach for analyzing attacker-defender behavior in DNN backdoors
gan: Kassem Kallas, et al.
Cyhoeddwyd: (2024-10-01) -
DNN model theft through trojan side-channel on edge FPGA accelerator
gan: Chandrasekar, Srivatsan, et al.
Cyhoeddwyd: (2024) -
Using side-channel and quantization vulnerability to recover DNN weights
gan: Jinghai LI, et al.
Cyhoeddwyd: (2021-08-01) -
Universal patching method for side-channel vulnerabilities based on atomic obfuscation
gan: Deqing ZOU, et al.
Cyhoeddwyd: (2022-04-01)