High-temperature reverse osmosis and molecular separation with robust polyamide-ceramic membranes

Polyamide thin-film composite (TFC) membranes are widely used for reverse osmosis (RO), but most commercial RO membranes have a limited operating temperature of <45 °C. This has constrained the broader applications of RO in industries, where process and water feeds with high temperature >50 °C...

Full description

Bibliographic Details
Main Authors: Chong, Jeng Yi, Zhao, Yali, Wang, Rong
Other Authors: School of Civil and Environmental Engineering
Format: Journal Article
Language:English
Published: 2024
Subjects:
Online Access:https://hdl.handle.net/10356/179038
Description
Summary:Polyamide thin-film composite (TFC) membranes are widely used for reverse osmosis (RO), but most commercial RO membranes have a limited operating temperature of <45 °C. This has constrained the broader applications of RO in industries, where process and water feeds with high temperature >50 °C are common. In this study, robust polyamide-ceramic TFC membranes were developed for high-temperature RO (HT-RO). RO-type polyamide thin-film was successfully synthesized on the inner surface of ceramic tubular membranes via interfacial polymerization. The polyamide-ceramic membranes exhibited excellent thermal stability, maintaining high NaCl rejection (>98 %) and steady water permeability (∼5 LMH/bar) during HT-RO at 70 °C. The molecular weight cut-off (MWCO) of the membranes increased slightly from 90 to 140 Da at 70 °C, and the surface charge played an important role in maintaining the high salt rejection. Long-term stability tests showed that polyamide thin-films may undergo thermal hydrolysis at 80 °C. It was also found that polymeric substrates of flat-sheet RO membranes may experience serious compaction at high temperature, which could subsequently affect the performance and stability of the polyamide layer. The ceramic substrates provide strong support at high temperature, and the highly stable polyamide-ceramic membranes demonstrated huge potential for RO applications under more challenging conditions.