Polariton lasing in Mie-resonant perovskite nanocavity
Deeply subwavelength lasers (or nanolasers) are highly demanded for compact on-chip bioimaging and sensing at the nanoscale. One of the main obstacles for the development of single-particle nanolasers with all three dimensions shorter than the emitting wavelength in the visible range is the high...
Main Authors: | , , , , , , , , , , , , , , |
---|---|
Other Authors: | |
Format: | Journal Article |
Language: | English |
Published: |
2024
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/179777 |
_version_ | 1811684030416945152 |
---|---|
author | Masharin, Mikhail A. Khmelevskaia, Daria Kondratiev, Valeriy I. Markina, Daria I. Utyushev, Anton D. Dolgintsev, Dmitriy M. Dmitriev, Alexey D. Shahnazaryan, Vanik A. Pushkarev, Anatoly P. Isik, Furkan Iorsh, Ivan V. Shelykh, Ivan A. Demir, Hilmi Volkan Samusev, Anton K. Makarov, Sergey V. |
author2 | School of Electrical and Electronic Engineering |
author_facet | School of Electrical and Electronic Engineering Masharin, Mikhail A. Khmelevskaia, Daria Kondratiev, Valeriy I. Markina, Daria I. Utyushev, Anton D. Dolgintsev, Dmitriy M. Dmitriev, Alexey D. Shahnazaryan, Vanik A. Pushkarev, Anatoly P. Isik, Furkan Iorsh, Ivan V. Shelykh, Ivan A. Demir, Hilmi Volkan Samusev, Anton K. Makarov, Sergey V. |
author_sort | Masharin, Mikhail A. |
collection | NTU |
description | Deeply subwavelength lasers (or nanolasers) are highly demanded for compact
on-chip bioimaging and sensing at the nanoscale. One of the main obstacles for
the development of single-particle nanolasers with all three dimensions shorter
than the emitting wavelength in the visible range is the high lasing thresholds
and the resulting overheating. Here we exploit exciton-polariton condensation
and mirror-image Mie modes in a cuboid CsPbBr$_3$ nanoparticle to achieve
coherent emission at the visible wavelength of around 0.53~$\mu $m from its
ultra-small ($\approx$0.007$\mu$m$^3$ or $\approx\lambda^3$/20) semiconductor
nanocavity. The polaritonic nature of the emission from the nanocavity
localized in all three dimensions is proven by direct comparison with
corresponding one-dimensional and two-dimensional waveguiding systems with
similar material parameters. Such a deeply subwavelength nanolaser is enabled
not only by the high values for exciton binding energy ($\approx$35 meV),
refractive index ($>$2.5 at low temperature), and luminescence quantum yield of
CsPbBr$_3$, but also by the optimization of polaritons condensation on the Mie
resonances. Moreover, the key parameters for optimal lasing conditions are
intermode free spectral range and phonons spectrum in CsPbBr$_3$, which govern
polaritons condensation path. Such chemically synthesized colloidal CsPbBr$_3$
nanolasers can be easily deposited on arbitrary surfaces, which makes them a
versatile tool for integration with various on-chip systems. |
first_indexed | 2024-10-01T04:22:09Z |
format | Journal Article |
id | ntu-10356/179777 |
institution | Nanyang Technological University |
language | English |
last_indexed | 2024-10-01T04:22:09Z |
publishDate | 2024 |
record_format | dspace |
spelling | ntu-10356/1797772024-08-23T15:40:32Z Polariton lasing in Mie-resonant perovskite nanocavity Masharin, Mikhail A. Khmelevskaia, Daria Kondratiev, Valeriy I. Markina, Daria I. Utyushev, Anton D. Dolgintsev, Dmitriy M. Dmitriev, Alexey D. Shahnazaryan, Vanik A. Pushkarev, Anatoly P. Isik, Furkan Iorsh, Ivan V. Shelykh, Ivan A. Demir, Hilmi Volkan Samusev, Anton K. Makarov, Sergey V. School of Electrical and Electronic Engineering School of Physical and Mathematical Sciences School of Materials Science and Engineering LUMINOUS! Center of Excellence for Semiconductor Lighting and Displays Engineering Nanolaser Mie resonance Deeply subwavelength lasers (or nanolasers) are highly demanded for compact on-chip bioimaging and sensing at the nanoscale. One of the main obstacles for the development of single-particle nanolasers with all three dimensions shorter than the emitting wavelength in the visible range is the high lasing thresholds and the resulting overheating. Here we exploit exciton-polariton condensation and mirror-image Mie modes in a cuboid CsPbBr$_3$ nanoparticle to achieve coherent emission at the visible wavelength of around 0.53~$\mu $m from its ultra-small ($\approx$0.007$\mu$m$^3$ or $\approx\lambda^3$/20) semiconductor nanocavity. The polaritonic nature of the emission from the nanocavity localized in all three dimensions is proven by direct comparison with corresponding one-dimensional and two-dimensional waveguiding systems with similar material parameters. Such a deeply subwavelength nanolaser is enabled not only by the high values for exciton binding energy ($\approx$35 meV), refractive index ($>$2.5 at low temperature), and luminescence quantum yield of CsPbBr$_3$, but also by the optimization of polaritons condensation on the Mie resonances. Moreover, the key parameters for optimal lasing conditions are intermode free spectral range and phonons spectrum in CsPbBr$_3$, which govern polaritons condensation path. Such chemically synthesized colloidal CsPbBr$_3$ nanolasers can be easily deposited on arbitrary surfaces, which makes them a versatile tool for integration with various on-chip systems. Published version The work was supported by the Federal Program 'Priority 2030' and NSFC (Project 62350610272). A. K. Samusev acknowledges Deutsche Forschungsgemeinschaft – project No.529710370. The authors are thankful to Nina Sheremet, Volodymyr Sheremet, Hüseyin Bilge Yağcı, and Hamed Dehghanpour Baruj for assistance with the experiments at Bilkent University UNAM, and Mikhail Baranov for assistance with the experiments at ITMO University. The authors thank Mr. Ivan Pustovit for assistance in graphic design. 2024-08-22T05:49:43Z 2024-08-22T05:49:43Z 2024 Journal Article Masharin, M. A., Khmelevskaia, D., Kondratiev, V. I., Markina, D. I., Utyushev, A. D., Dolgintsev, D. M., Dmitriev, A. D., Shahnazaryan, V. A., Pushkarev, A. P., Isik, F., Iorsh, I. V., Shelykh, I. A., Demir, H. V., Samusev, A. K. & Makarov, S. V. (2024). Polariton lasing in Mie-resonant perovskite nanocavity. Opto-Electronic Advances, 7(4), 230148-230148. https://dx.doi.org/10.29026/oea.2024.230148 2096-4579 https://hdl.handle.net/10356/179777 10.29026/oea.2024.230148 2-s2.0-85192511536 4 7 230148 230148 en Opto-Electronic Advances © The Author(s) 2024. Published by Institute of Optics and Electronics, Chinese Academy of Sciences. This article is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. application/pdf |
spellingShingle | Engineering Nanolaser Mie resonance Masharin, Mikhail A. Khmelevskaia, Daria Kondratiev, Valeriy I. Markina, Daria I. Utyushev, Anton D. Dolgintsev, Dmitriy M. Dmitriev, Alexey D. Shahnazaryan, Vanik A. Pushkarev, Anatoly P. Isik, Furkan Iorsh, Ivan V. Shelykh, Ivan A. Demir, Hilmi Volkan Samusev, Anton K. Makarov, Sergey V. Polariton lasing in Mie-resonant perovskite nanocavity |
title | Polariton lasing in Mie-resonant perovskite nanocavity |
title_full | Polariton lasing in Mie-resonant perovskite nanocavity |
title_fullStr | Polariton lasing in Mie-resonant perovskite nanocavity |
title_full_unstemmed | Polariton lasing in Mie-resonant perovskite nanocavity |
title_short | Polariton lasing in Mie-resonant perovskite nanocavity |
title_sort | polariton lasing in mie resonant perovskite nanocavity |
topic | Engineering Nanolaser Mie resonance |
url | https://hdl.handle.net/10356/179777 |
work_keys_str_mv | AT masharinmikhaila polaritonlasinginmieresonantperovskitenanocavity AT khmelevskaiadaria polaritonlasinginmieresonantperovskitenanocavity AT kondratievvaleriyi polaritonlasinginmieresonantperovskitenanocavity AT markinadariai polaritonlasinginmieresonantperovskitenanocavity AT utyushevantond polaritonlasinginmieresonantperovskitenanocavity AT dolgintsevdmitriym polaritonlasinginmieresonantperovskitenanocavity AT dmitrievalexeyd polaritonlasinginmieresonantperovskitenanocavity AT shahnazaryanvanika polaritonlasinginmieresonantperovskitenanocavity AT pushkarevanatolyp polaritonlasinginmieresonantperovskitenanocavity AT isikfurkan polaritonlasinginmieresonantperovskitenanocavity AT iorshivanv polaritonlasinginmieresonantperovskitenanocavity AT shelykhivana polaritonlasinginmieresonantperovskitenanocavity AT demirhilmivolkan polaritonlasinginmieresonantperovskitenanocavity AT samusevantonk polaritonlasinginmieresonantperovskitenanocavity AT makarovsergeyv polaritonlasinginmieresonantperovskitenanocavity |