Domain knowledge-enhanced region growing framework for semantic segmentation of bridge point clouds
Utilising domain knowledge (DK) to semantically segment bridge point clouds has attracted growing research interest. However, current approaches are often tailored to specific bridges, limiting their general applicability. To address this problem, this paper introduces a DK-enhanced Region Growing (...
Main Authors: | Yang, Tao, Zou, Yang, Yang, Xiaofei, del Rey Castillo, Enrique |
---|---|
Andre forfattere: | School of Civil and Environmental Engineering |
Format: | Journal Article |
Sprog: | English |
Udgivet: |
2024
|
Fag: | |
Online adgang: | https://hdl.handle.net/10356/179996 |
Lignende værker
-
PReFormer: A memory-efficient transformer for point cloud semantic segmentation
af: Perpetual Hope Akwensi, et al.
Udgivet: (2024-04-01) -
Language-Level Semantics-Conditioned 3D Point Cloud Segmentation
af: Bo Liu, et al.
Udgivet: (2024-06-01) -
Small but mighty: Enhancing 3D point clouds semantic segmentation with U-Next framework
af: Ziyin Zeng, et al.
Udgivet: (2025-02-01) -
FPS-Net: a convolutional fusion network for large-scale LiDAR point cloud segmentation
af: Xiao, Aoran, et al.
Udgivet: (2022) -
Point cloud semantic segmentation with adaptive spatial structure graph transformer
af: Ting Han, et al.
Udgivet: (2024-09-01)