Polarized message-passing in graph neural networks
In this paper, we present Polarized message-passing (PMP), a novel paradigm to revolutionize the design of message-passing graph neural networks (GNNs). In contrast to existing methods, PMP captures the power of node-node similarity and dissimilarity to acquire dual sources of messages from neighbor...
Main Authors: | , , , , |
---|---|
Other Authors: | |
Format: | Journal Article |
Language: | English |
Published: |
2024
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/180033 |