Destination intention estimation-based convolutional encoder-decoder for pedestrian trajectory multimodality forecast
Forecasting pedestrian trajectory is a vital area of research in smart urban mobility, which can be applied to intelligent transportation and intelligent surveillance. Current approaches employ conditional variational autoencoders to model future trajectory multimodality. However, these methods gene...
Main Authors: | , , , , , |
---|---|
Other Authors: | |
Format: | Journal Article |
Language: | English |
Published: |
2024
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/180388 |