Advanced aerodynamics-driven energy harvesting leveraging galloping-flutter synergy
Flow-induced vibrations (FIVs) serve as the fundamental principle of non-rotary wind energy harvesting. However, nanogenerators relying on a single FIV effect remain constrained by insufficient breeze energy conversion efficiency. In this paper, we propose a novel galloping-flutter coupled nanogener...
Main Authors: | , , , , , |
---|---|
Other Authors: | |
Format: | Journal Article |
Language: | English |
Published: |
2025
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/182265 |