Incremental extreme learning machine

This new theory shows that in order to let SLFNs work as universal approximators, one may simply randomly choose input-to-hidden nodes, and then we only need to adjust the output weights linking the hidden layer and the output layer. In such SLFNs implementations, the activation functions for additi...

ver descrição completa

Detalhes bibliográficos
Autor principal: Chen, Lei
Outros Autores: Huang Guangbin
Formato: Tese
Publicado em: 2008
Assuntos:
Acesso em linha:https://hdl.handle.net/10356/3804