Thermal propoerty measurement of nanofluid

Nanofluids are new kinds of fluids engineered by dispersing nanoparticles in base fluids. This report presents an experimental investigation of thermophysical properties of Al2O3 nanofluids. Al2O3 nanofluids were prepared by adding surfactant and undergoing ultrasonication. After which, the thermal...

Full description

Bibliographic Details
Main Author: Kwek, Ding Tian.
Other Authors: School of Mechanical and Aerospace Engineering
Format: Final Year Project (FYP)
Language:English
Published: 2010
Subjects:
Online Access:http://hdl.handle.net/10356/40323
_version_ 1811684252199157760
author Kwek, Ding Tian.
author2 School of Mechanical and Aerospace Engineering
author_facet School of Mechanical and Aerospace Engineering
Kwek, Ding Tian.
author_sort Kwek, Ding Tian.
collection NTU
description Nanofluids are new kinds of fluids engineered by dispersing nanoparticles in base fluids. This report presents an experimental investigation of thermophysical properties of Al2O3 nanofluids. Al2O3 nanofluids were prepared by adding surfactant and undergoing ultrasonication. After which, the thermal conductivity, viscosity and surface tension were measured. Thermal conductivity is determined using the transient hot wire experiment. The results show that the thermal conductivity of Al2O3 nanofluids increases with increasing nanoparticle concentrations in a distinct linear fashion. It is found that adding a small volume percentage, 1 to 5% of Al2O3 nanoparticles in water significantly increases the effective thermal conductivity of Al2O3 nanofluids by 6 to 20% respectively. It was further observed that a dramatic increase in the enhancement of conductivity takes place with temperature. With 1% nanoparticles at 15°C, the enhancement is about 1.7%, but at 55°C this value increases to about 16%. This finding makes nanofluids even more attractive as cooling fluid for devices with high energy density where the cooling fluid is likely to work at a temperature higher than the room temperature. Results also indicate that particle size is an important parameter for effective thermal conductivity. As particle sizes increase from 10 nm to 35 nm, thermal conductivity enhancement decreases from 30% to 10%. Enhancement starts to increase when particle size is above 35 nm. The increase in thermal conductivity is ~27.5% for particle size of 150 nm. Viscosity measurements were conducted with the rotational rheometer. The shear thinning effect observed by some of the researchers is caused by agglomeration. We observe that after re-ultrasonification, at volume concentrations 1-5%, nanofluids exhibit Newtonian behaviour. The effective viscosity increases as volume concentrations increases. At 5% volume concentration, there is an increment of 60% in viscosity. As temperature increases, the viscosity of Al2O3 nanofluids decreases exponentially. However, the effective viscosity ratio against temperature shows that above 35°C, the decrease in viscosity is not as effective. The experimental results also indicate that when nanoparticle size is smaller, the viscosity of nanofluids is much larger. At 5% volume concentration and particle size of 10 nm, there is increment in viscosity by 80%. Lastly, surface tension measurement is conducted using the FTA 200 equipment. Results indicate that particle volume concentration has negligible effect on the surface tension. The decrease in surface tension is likely due to the addition of surfactant Cetyltrimethylammonium Bromide (CTAB), which changes the surface properties of nanofluids.
first_indexed 2024-10-01T04:25:40Z
format Final Year Project (FYP)
id ntu-10356/40323
institution Nanyang Technological University
language English
last_indexed 2024-10-01T04:25:40Z
publishDate 2010
record_format dspace
spelling ntu-10356/403232023-03-04T18:49:19Z Thermal propoerty measurement of nanofluid Kwek, Ding Tian. School of Mechanical and Aerospace Engineering Fei Duan DRNTU::Engineering::Mechanical engineering DRNTU::Engineering::Mechanical engineering::Fluid mechanics Nanofluids are new kinds of fluids engineered by dispersing nanoparticles in base fluids. This report presents an experimental investigation of thermophysical properties of Al2O3 nanofluids. Al2O3 nanofluids were prepared by adding surfactant and undergoing ultrasonication. After which, the thermal conductivity, viscosity and surface tension were measured. Thermal conductivity is determined using the transient hot wire experiment. The results show that the thermal conductivity of Al2O3 nanofluids increases with increasing nanoparticle concentrations in a distinct linear fashion. It is found that adding a small volume percentage, 1 to 5% of Al2O3 nanoparticles in water significantly increases the effective thermal conductivity of Al2O3 nanofluids by 6 to 20% respectively. It was further observed that a dramatic increase in the enhancement of conductivity takes place with temperature. With 1% nanoparticles at 15°C, the enhancement is about 1.7%, but at 55°C this value increases to about 16%. This finding makes nanofluids even more attractive as cooling fluid for devices with high energy density where the cooling fluid is likely to work at a temperature higher than the room temperature. Results also indicate that particle size is an important parameter for effective thermal conductivity. As particle sizes increase from 10 nm to 35 nm, thermal conductivity enhancement decreases from 30% to 10%. Enhancement starts to increase when particle size is above 35 nm. The increase in thermal conductivity is ~27.5% for particle size of 150 nm. Viscosity measurements were conducted with the rotational rheometer. The shear thinning effect observed by some of the researchers is caused by agglomeration. We observe that after re-ultrasonification, at volume concentrations 1-5%, nanofluids exhibit Newtonian behaviour. The effective viscosity increases as volume concentrations increases. At 5% volume concentration, there is an increment of 60% in viscosity. As temperature increases, the viscosity of Al2O3 nanofluids decreases exponentially. However, the effective viscosity ratio against temperature shows that above 35°C, the decrease in viscosity is not as effective. The experimental results also indicate that when nanoparticle size is smaller, the viscosity of nanofluids is much larger. At 5% volume concentration and particle size of 10 nm, there is increment in viscosity by 80%. Lastly, surface tension measurement is conducted using the FTA 200 equipment. Results indicate that particle volume concentration has negligible effect on the surface tension. The decrease in surface tension is likely due to the addition of surfactant Cetyltrimethylammonium Bromide (CTAB), which changes the surface properties of nanofluids. Bachelor of Engineering (Mechanical Engineering) 2010-06-14T08:30:53Z 2010-06-14T08:30:53Z 2010 2010 Final Year Project (FYP) http://hdl.handle.net/10356/40323 en Nanyang Technological University 140 p. application/pdf
spellingShingle DRNTU::Engineering::Mechanical engineering
DRNTU::Engineering::Mechanical engineering::Fluid mechanics
Kwek, Ding Tian.
Thermal propoerty measurement of nanofluid
title Thermal propoerty measurement of nanofluid
title_full Thermal propoerty measurement of nanofluid
title_fullStr Thermal propoerty measurement of nanofluid
title_full_unstemmed Thermal propoerty measurement of nanofluid
title_short Thermal propoerty measurement of nanofluid
title_sort thermal propoerty measurement of nanofluid
topic DRNTU::Engineering::Mechanical engineering
DRNTU::Engineering::Mechanical engineering::Fluid mechanics
url http://hdl.handle.net/10356/40323
work_keys_str_mv AT kwekdingtian thermalpropoertymeasurementofnanofluid