Numerical modeling of the impacts of high-albedo roofs on building energy

The effectiveness of cool roof to reduce air-conditioner electric consumption in a test building located in Singapore is to be determined by simulations using EnergyPlus. A model for the simulations is developed in Google SketchUp and IDF Editor. Before the model is simulated, it is calibrated to de...

Full description

Bibliographic Details
Main Author: Wardana, Malindo.
Other Authors: School of Mechanical and Aerospace Engineering
Format: Final Year Project (FYP)
Language:English
Published: 2012
Subjects:
Online Access:http://hdl.handle.net/10356/50379
Description
Summary:The effectiveness of cool roof to reduce air-conditioner electric consumption in a test building located in Singapore is to be determined by simulations using EnergyPlus. A model for the simulations is developed in Google SketchUp and IDF Editor. Before the model is simulated, it is calibrated to determine the approximate value of concrete’s material properties used in test buildings’ envelopes. The calibration is done by matching roof outside and inside temperature data resulted from simulations and the one obtained from measurement. After obtaining a good approximation of the values, simulations are run to analyze heat transfer mechanism in building envelopes. The results show that roof gains significant heat from outdoor environment. It also transfers most of those heats to room’s air, making air-conditioner expends huge energy to remove it. Then cool roof is employed and reduction in heat gain to the roof is examined. The energy savings (in kWh and SGD) achieved is also presented. Lastly comparison between cool roof and other cooling strategies i.e. adding roof insulation and changing the glazing material is given. The comparison proves that cool roof is the best method to reduce air-conditioner electric consumption in Singapore climate condition.