A SIR-based communication paradigm for realization of molecular nanonetwork

Advancements in nanotechnology have enabled the fabrication of simple nano-machines with very limited sensing, computation, communication, and action capabilities. In order to develop more effective application, nanonetworks which are the networks of communicating nano-machines need to be designed....

Full description

Bibliographic Details
Main Author: Chen, Ya Fen.
Other Authors: Ma Maode
Format: Final Year Project (FYP)
Language:English
Published: 2012
Subjects:
Online Access:http://hdl.handle.net/10356/50911
Description
Summary:Advancements in nanotechnology have enabled the fabrication of simple nano-machines with very limited sensing, computation, communication, and action capabilities. In order to develop more effective application, nanonetworks which are the networks of communicating nano-machines need to be designed. Therefore, it can be used to accomplish complex tasks such as drug delivery and health monitoring. Efficient communication and networking paradigms is essential to be developed for the realization of future nanonetworks. In this report, the infected-suspicious- recovered state molecular nanonetwork (SIRMNET) is developed for the communication of nano-machines. In SIRMNET, nano-machines and controlstations propagate information in the epidemic disease spreading manner once they have a physical contact with each other. An analytical framework for the performance of the SIRMNET is presented. Using the analytical model, numerical results for the performance evaluation is obtained. The results reveal the SIRMNET is a feasible way to realize the nanonetwork with adequately high throughput performance and sufficiently low communication delay.