Solar power optimiser for smart hybrid DC-AC grid

Renewable energy has been increasingly popular since it is pollution free and the source of energy is unlimited. Photovoltaic is one of the most common technology but the conversion rate of solar into electrical energy is heavily dependent on environmental factors. This project explores a design met...

Full description

Bibliographic Details
Main Author: Lin, Binghong.
Other Authors: School of Electrical and Electronic Engineering
Format: Final Year Project (FYP)
Language:English
Published: 2013
Subjects:
Online Access:http://hdl.handle.net/10356/53419
Description
Summary:Renewable energy has been increasingly popular since it is pollution free and the source of energy is unlimited. Photovoltaic is one of the most common technology but the conversion rate of solar into electrical energy is heavily dependent on environmental factors. This project explores a design method of photovoltaic system which incorporates 3 photovoltaic panels and 3 DC-DC boost converters. The converters step up DC voltage provided by the solar panels individually, producing a total output voltage of 230V. Whenever one of the panels is covered by clouds, it would prompt the other 2 converters to boost additional voltage in order to maintain the desired output signal. Furthermore, the boost converter will return to their default operation when the sky is cleared. A C programming language is created to monitor the output voltage, produce PWM signal for the duty ratio of the boost converter and PI controller to maintain a desired output voltage.