Key phrase extraction from user generated content

[1] The Stanford Natural Language Processing Group. Retrieved from http://nlp.stanford.edu/ [2] L. Ratinov and D. Roth, Design Challenges and Misconceptions in Named Entity Recognition. CoNLL (2009) [3] OpenNLP. Retrieved from http://opennlp.apache.org/ [4] Stanford Log-linear Part-Of-Speec...

Full description

Bibliographic Details
Main Author: Lee, Angeline Kai Zhen
Other Authors: Sun Aixin
Format: Final Year Project (FYP)
Language:English
Published: 2014
Subjects:
Online Access:http://hdl.handle.net/10356/59128
_version_ 1811681955807232000
author Lee, Angeline Kai Zhen
author2 Sun Aixin
author_facet Sun Aixin
Lee, Angeline Kai Zhen
author_sort Lee, Angeline Kai Zhen
collection NTU
description [1] The Stanford Natural Language Processing Group. Retrieved from http://nlp.stanford.edu/ [2] L. Ratinov and D. Roth, Design Challenges and Misconceptions in Named Entity Recognition. CoNLL (2009) [3] OpenNLP. Retrieved from http://opennlp.apache.org/ [4] Stanford Log-linear Part-Of-Speech Tagger. Retrieved from http://nlp.stanford.edu/software/tagger.shtml [5] A. Turpin and W. Hersh. (2004). Do Clarity Scores for Queries Correlate with User Performance? [6] Steve Cronen-Townsend and W. Bruce Croft. (2002). Quantify Query Ambiguity [7] Kullback–Leibler divergence. Retrieved from http://en.wikipedia.org/wiki/Kullback%E2%80%93Leibler_divergence [8] Apache Lucene Core. Retrieved from http://lucene.apache.org/core/
first_indexed 2024-10-01T03:49:10Z
format Final Year Project (FYP)
id ntu-10356/59128
institution Nanyang Technological University
language English
last_indexed 2024-10-01T03:49:10Z
publishDate 2014
record_format dspace
spelling ntu-10356/591282023-03-03T20:39:27Z Key phrase extraction from user generated content Lee, Angeline Kai Zhen Sun Aixin School of Computer Engineering DRNTU::Engineering::Computer science and engineering [1] The Stanford Natural Language Processing Group. Retrieved from http://nlp.stanford.edu/ [2] L. Ratinov and D. Roth, Design Challenges and Misconceptions in Named Entity Recognition. CoNLL (2009) [3] OpenNLP. Retrieved from http://opennlp.apache.org/ [4] Stanford Log-linear Part-Of-Speech Tagger. Retrieved from http://nlp.stanford.edu/software/tagger.shtml [5] A. Turpin and W. Hersh. (2004). Do Clarity Scores for Queries Correlate with User Performance? [6] Steve Cronen-Townsend and W. Bruce Croft. (2002). Quantify Query Ambiguity [7] Kullback–Leibler divergence. Retrieved from http://en.wikipedia.org/wiki/Kullback%E2%80%93Leibler_divergence [8] Apache Lucene Core. Retrieved from http://lucene.apache.org/core/ Bachelor of Engineering (Computer Science) 2014-04-23T11:58:23Z 2014-04-23T11:58:23Z 2014 2014 Final Year Project (FYP) http://hdl.handle.net/10356/59128 en Nanyang Technological University 58 p. application/pdf
spellingShingle DRNTU::Engineering::Computer science and engineering
Lee, Angeline Kai Zhen
Key phrase extraction from user generated content
title Key phrase extraction from user generated content
title_full Key phrase extraction from user generated content
title_fullStr Key phrase extraction from user generated content
title_full_unstemmed Key phrase extraction from user generated content
title_short Key phrase extraction from user generated content
title_sort key phrase extraction from user generated content
topic DRNTU::Engineering::Computer science and engineering
url http://hdl.handle.net/10356/59128
work_keys_str_mv AT leeangelinekaizhen keyphraseextractionfromusergeneratedcontent