Application of thermo electric cooler (TEC) in avionics for thermal management

A trend of growing power demand on both civilian and military aircrafts, owing to increasingly powerful electrical systems such as avionics, in-flight entertainment, and radar, has led to considerable challenges in thermal management. Left disregarded, the significant heat generated by components wi...

Full description

Bibliographic Details
Main Author: Ng, Yan Wen
Other Authors: Li King Ho Holden
Format: Final Year Project (FYP)
Language:English
Published: 2015
Subjects:
Online Access:http://hdl.handle.net/10356/65121
Description
Summary:A trend of growing power demand on both civilian and military aircrafts, owing to increasingly powerful electrical systems such as avionics, in-flight entertainment, and radar, has led to considerable challenges in thermal management. Left disregarded, the significant heat generated by components within would have an adverse impact on system performance and reliability. Although crucial, suitable methods of thermal management are limited by various aerospace considerations, such as weight, size, and reliability. In this respect, ThermoElectric Coolers (TECs) surface as a possible method, given that they are lightweight and compact in size, with a high mean time between failures (MTBF) and ability to change from cooling to heating through a simple voltage polarity reversal. In this project, studies were carried out to determine the feasibility of employing TEC in a specified avionics chassis under an environment of 55 °C still air at 1 atmospheric pressure, with the case temperature (Tcase) of components as the quantifying variable. Numerical simulations of the chassis were carried out in FloTHERM, while validation of the modeling approach and results was done through data collection from an experimental setup. While results showed that introduction of the TEC under the above-mentioned environmental conditions reduced the temperature of the component being cooled by 9.02 °C, a cooled Tcase of 86.16 °C was still higher than the target Tcase of 73.9 °C. The use of a TEC alone proved to be an inadequate form of thermal management. The results revealed that the boundary condition at the TEC hot side would have to be augmented through the introduction of flow or heat sinks to bring the component Tcase down further. In addition, the use of TEC would be more suitable for applications requiring precision temperature control or active cooling.