Motion planning and balance analysis of robotic exoskeleton with balance stabilizer mechanism

Nowadays, in conventional gait rehabilitation, physiotherapist assistant (PTA) plays the main role in improving patient’s physical and mental functioning. Normally, several PTAs are required to assist one patient in guiding his/her limbs in rehabilitation training, which is considered as a highly la...

Full description

Bibliographic Details
Main Author: Lai, Wenjie
Other Authors: Low Kin Huat
Format: Final Year Project (FYP)
Language:English
Published: 2015
Subjects:
Online Access:http://hdl.handle.net/10356/65160
_version_ 1826124830287593472
author Lai, Wenjie
author2 Low Kin Huat
author_facet Low Kin Huat
Lai, Wenjie
author_sort Lai, Wenjie
collection NTU
description Nowadays, in conventional gait rehabilitation, physiotherapist assistant (PTA) plays the main role in improving patient’s physical and mental functioning. Normally, several PTAs are required to assist one patient in guiding his/her limbs in rehabilitation training, which is considered as a highly labour intensive task. Therefore, to overcome the drawbacks of manually assisted gait rehabilitation, robotic assisted gait rehabilitation robot especially wearable exoskeleton type has been emerged to meet the history of destiny. It is implemented by experienced therapists to help the patient do stall-recovery exercise. However, most of the wearable exoskeleton robots require the user to use a crutch to balance themselves since most of the systems are under-actuated. This may cause a potential hazard and high energy-consumption if the user cannot use the crutch properly to coordinate with the exoskeleton device. This report focuses motion planning and balance analysis of a wearable lower-limb exoskeleton robot with a balanced stabilizing mechanism. The balance stabilizer mechanism can act as the role of “robotic crutch” and thus can help reduce the user-dependency on crutch while walking with the exoskeleton-type device. In this report, a background study on human gait pattern and gait rehabilitation robotic exoskeletons is conducted, which confines the scope and objectives of this project. Then an inverse kinematics model has been set up for the exoskeleton robot with a balance stabilizer mechanism. By providing the hip motion and ankle motion of the robot, the inverse kinematics can be used to calculate the joint angles to allow the exoskeleton to move synchronously with the balance stabilizer mechanism. At last, the stability of the system is analyzed by using the Zero Moment Point (ZMP) criteria. An unbalanced motion filtering method has been proposed based on the analysis which can generate a stable motion for the system. In the conclusion chapter, summary and recommendations for future improvements are included.
first_indexed 2024-10-01T06:26:47Z
format Final Year Project (FYP)
id ntu-10356/65160
institution Nanyang Technological University
language English
last_indexed 2024-10-01T06:26:47Z
publishDate 2015
record_format dspace
spelling ntu-10356/651602023-03-04T19:32:13Z Motion planning and balance analysis of robotic exoskeleton with balance stabilizer mechanism Lai, Wenjie Low Kin Huat School of Mechanical and Aerospace Engineering Robotics Research Centre DRNTU::Engineering::Mechanical engineering Nowadays, in conventional gait rehabilitation, physiotherapist assistant (PTA) plays the main role in improving patient’s physical and mental functioning. Normally, several PTAs are required to assist one patient in guiding his/her limbs in rehabilitation training, which is considered as a highly labour intensive task. Therefore, to overcome the drawbacks of manually assisted gait rehabilitation, robotic assisted gait rehabilitation robot especially wearable exoskeleton type has been emerged to meet the history of destiny. It is implemented by experienced therapists to help the patient do stall-recovery exercise. However, most of the wearable exoskeleton robots require the user to use a crutch to balance themselves since most of the systems are under-actuated. This may cause a potential hazard and high energy-consumption if the user cannot use the crutch properly to coordinate with the exoskeleton device. This report focuses motion planning and balance analysis of a wearable lower-limb exoskeleton robot with a balanced stabilizing mechanism. The balance stabilizer mechanism can act as the role of “robotic crutch” and thus can help reduce the user-dependency on crutch while walking with the exoskeleton-type device. In this report, a background study on human gait pattern and gait rehabilitation robotic exoskeletons is conducted, which confines the scope and objectives of this project. Then an inverse kinematics model has been set up for the exoskeleton robot with a balance stabilizer mechanism. By providing the hip motion and ankle motion of the robot, the inverse kinematics can be used to calculate the joint angles to allow the exoskeleton to move synchronously with the balance stabilizer mechanism. At last, the stability of the system is analyzed by using the Zero Moment Point (ZMP) criteria. An unbalanced motion filtering method has been proposed based on the analysis which can generate a stable motion for the system. In the conclusion chapter, summary and recommendations for future improvements are included. Bachelor of Engineering (Mechanical Engineering) 2015-06-15T06:00:21Z 2015-06-15T06:00:21Z 2015 2015 Final Year Project (FYP) http://hdl.handle.net/10356/65160 en Nanyang Technological University 90 p. application/pdf application/octet-stream
spellingShingle DRNTU::Engineering::Mechanical engineering
Lai, Wenjie
Motion planning and balance analysis of robotic exoskeleton with balance stabilizer mechanism
title Motion planning and balance analysis of robotic exoskeleton with balance stabilizer mechanism
title_full Motion planning and balance analysis of robotic exoskeleton with balance stabilizer mechanism
title_fullStr Motion planning and balance analysis of robotic exoskeleton with balance stabilizer mechanism
title_full_unstemmed Motion planning and balance analysis of robotic exoskeleton with balance stabilizer mechanism
title_short Motion planning and balance analysis of robotic exoskeleton with balance stabilizer mechanism
title_sort motion planning and balance analysis of robotic exoskeleton with balance stabilizer mechanism
topic DRNTU::Engineering::Mechanical engineering
url http://hdl.handle.net/10356/65160
work_keys_str_mv AT laiwenjie motionplanningandbalanceanalysisofroboticexoskeletonwithbalancestabilizermechanism