TiO2 composite nanofiber materials for simultaneous renewable energy production and waste water treatment

A green approach was successfully developed to reap three environmental benefits simultaneously: (1) clean water production, (2) hydrogen (H2) generation and (3) well-dispersed in-situ Cu2+ recovery for direct TiO2/CuO composite (R-TC) reclamation; by exploiting the synergistic integration of photoc...

Full description

Bibliographic Details
Main Author: Lee, Siew Siang
Other Authors: Sun Delai, Darren
Format: Thesis
Language:English
Published: 2015
Subjects:
Online Access:https://hdl.handle.net/10356/65450
Description
Summary:A green approach was successfully developed to reap three environmental benefits simultaneously: (1) clean water production, (2) hydrogen (H2) generation and (3) well-dispersed in-situ Cu2+ recovery for direct TiO2/CuO composite (R-TC) reclamation; by exploiting the synergistic integration of photocatalytic reaction of Cu-EDTA and the merits of one-dimensional (1D) ultralong and ultrathin TiO2 nanofibers. The mechanism behind this approach was postulated. Meanwhile, electrospinning of an innovative precursor solution was developed to enhance the physicochemical properties while maintaining procedural simplicity and minimizing resources in the synthesis of novel-structured TiO2/CuO composite (I-TC). H2 generation capabilities of R-TC and I-TC were demonstrated in glycerol and AO7, with promising reusability and stability under both UV-visible and visible light irradiation. The dependency of photocatalytic efficiency on the balance and synergy among the essential physicochemical properties was also studied and discussed comprehensively, facilitating optimization of material synthesis. The overall study is significant as it has demonstrated and expounded innovative approaches which enhanced the environmental sustainability of cogenerating clean energy fuel and clean water from industrial wastewater through TiO2 photocatalysis.