Graphene quantum dot as drug carriers
Graphene quantum dot (GQD) is a nanoscale fluorescent particle which has various applications. It is synthesized from a suitable carbon precursor by either a top- down or a bottom- up approach like microwave- assisted, solvothermal, cage opening and other exfoliation reactions. For this project, GQD...
Main Author: | |
---|---|
Other Authors: | |
Format: | Final Year Project (FYP) |
Language: | English |
Published: |
2016
|
Subjects: | |
Online Access: | http://hdl.handle.net/10356/68347 |
Summary: | Graphene quantum dot (GQD) is a nanoscale fluorescent particle which has various applications. It is synthesized from a suitable carbon precursor by either a top- down or a bottom- up approach like microwave- assisted, solvothermal, cage opening and other exfoliation reactions. For this project, GQDs were used and studied for as a drug carrier. The target cells are HeLa, which are cervical cancer cells. The optimal condition for the drug loading onto the GQDs occurred at pH 8 while drug release was triggered rapidly at pH 5.5 (tumor pH). This experimental result provides an indication that the loading and release of beta- Lapachone can be controlled by changes in the pH of the solution. This characteristic proves to be a great advantage as tumor cells are slightly acidic in nature. The biocompatibility assay ensured the non-cell toxic nature of GQDs. Based on the cell viability (MTT) test, the results showed that in the presence of free drug and beta- lapachone- loaded GQD there was a significant reduction in cancer cell viability. This study would thus prove the efficacy of GQDs as drug carriers to cancerous cells. |
---|