Summary: | Computational tools can be used to accurately represent the behaviour of complex biological pathways. This report describes the computational model chosen, specific to Vanillin production pathways and describes how these pathways can be modelled using a “top-down” approach relating to its metabolites. Furthermore, a simulation on the production of Vanillin is produced to predict the concentrations of each involving metabolites within the pathways. This is to done to accurately analysis the production pathway of Vanillin with ferulic acid being its source.
The simulation of this vanillin production pathway was further investigated. After running different simulations, the sensitivity of each enzyme, trans-feruloyl-CoA and synthase enoyl-CoA hydratase, in this pathway were analysed. Trans-feruloyl-CoA was determined to have a higher sensitivity than synthase enoyl-CoA hydratase. This analysis enables further researchers to alter the concentration of trans-feruloyl-CoA enzyme production to increase the overall vanillin production.
Overall, this computer model can be used as a tool to guide wet bench based experiments. This successfully accelerates the biological research and simplifies the biological pathways to be worked on.
|