Inspection method development for 3D printed components in aerospace industries

In order to improve manufacturing quality and in the industry’s continual efforts to ensure public safety, components and structures in the aerospace industry are commonly inspected for early detection of any forms of defects or faults which may compromise overall structural integrity. Non Destructi...

Full description

Bibliographic Details
Main Author: Tan, Yong Han
Other Authors: Moon Seung Ki
Format: Final Year Project (FYP)
Language:English
Published: 2016
Subjects:
Online Access:http://hdl.handle.net/10356/68627
_version_ 1811679919703326720
author Tan, Yong Han
author2 Moon Seung Ki
author_facet Moon Seung Ki
Tan, Yong Han
author_sort Tan, Yong Han
collection NTU
description In order to improve manufacturing quality and in the industry’s continual efforts to ensure public safety, components and structures in the aerospace industry are commonly inspected for early detection of any forms of defects or faults which may compromise overall structural integrity. Non Destructive Testing or in short, NDT, currently presents sound advantages such as leaving the test subjects undamaged after inspection and fit for use immediately if within specification. In experimental NDT, available measurement data are usually used in order to gain clues, patterns or trends that may surface during the inspection process. And this clues includes possible representatives of structural modification such as cracks, porosities and even shifted layers. In this paper, comparisons between the five main stream NDT methods namely; Liquid penetrant (LP), Ultrasonic testing (UT), Magnetic particle inspection (MPI), Eddy current (EC) and Radiography, will be done with respect to specified 3D printed aerospace material(s) such as the commonly used aluminium alloys found in large quantities in commercial aircraft example the Boeing series airliners. Parts of this report will also feature the fabricating processes of a SLS (Selective laser Sintering) 3D printer. These methods are presented to investigate critical flaw-structure configuration, mainly focusing on sub surface defects in metallic parts. Proposed procedures may exploit and employ fuzzy logic. In conjunction with the evaluation and fabrication processes, ranking and selection of the “Best NDT method” for inspection on 3D printed aerospace parts will be chosen.
first_indexed 2024-10-01T03:16:48Z
format Final Year Project (FYP)
id ntu-10356/68627
institution Nanyang Technological University
language English
last_indexed 2024-10-01T03:16:48Z
publishDate 2016
record_format dspace
spelling ntu-10356/686272023-03-04T18:24:30Z Inspection method development for 3D printed components in aerospace industries Tan, Yong Han Moon Seung Ki School of Mechanical and Aerospace Engineering DRNTU::Engineering In order to improve manufacturing quality and in the industry’s continual efforts to ensure public safety, components and structures in the aerospace industry are commonly inspected for early detection of any forms of defects or faults which may compromise overall structural integrity. Non Destructive Testing or in short, NDT, currently presents sound advantages such as leaving the test subjects undamaged after inspection and fit for use immediately if within specification. In experimental NDT, available measurement data are usually used in order to gain clues, patterns or trends that may surface during the inspection process. And this clues includes possible representatives of structural modification such as cracks, porosities and even shifted layers. In this paper, comparisons between the five main stream NDT methods namely; Liquid penetrant (LP), Ultrasonic testing (UT), Magnetic particle inspection (MPI), Eddy current (EC) and Radiography, will be done with respect to specified 3D printed aerospace material(s) such as the commonly used aluminium alloys found in large quantities in commercial aircraft example the Boeing series airliners. Parts of this report will also feature the fabricating processes of a SLS (Selective laser Sintering) 3D printer. These methods are presented to investigate critical flaw-structure configuration, mainly focusing on sub surface defects in metallic parts. Proposed procedures may exploit and employ fuzzy logic. In conjunction with the evaluation and fabrication processes, ranking and selection of the “Best NDT method” for inspection on 3D printed aerospace parts will be chosen. Bachelor of Engineering (Mechanical Engineering) 2016-05-30T03:44:05Z 2016-05-30T03:44:05Z 2016 Final Year Project (FYP) http://hdl.handle.net/10356/68627 en Nanyang Technological University 97 p. application/pdf
spellingShingle DRNTU::Engineering
Tan, Yong Han
Inspection method development for 3D printed components in aerospace industries
title Inspection method development for 3D printed components in aerospace industries
title_full Inspection method development for 3D printed components in aerospace industries
title_fullStr Inspection method development for 3D printed components in aerospace industries
title_full_unstemmed Inspection method development for 3D printed components in aerospace industries
title_short Inspection method development for 3D printed components in aerospace industries
title_sort inspection method development for 3d printed components in aerospace industries
topic DRNTU::Engineering
url http://hdl.handle.net/10356/68627
work_keys_str_mv AT tanyonghan inspectionmethoddevelopmentfor3dprintedcomponentsinaerospaceindustries