Sequence prediction using recurrent neural network
The project implemented a Gap-Filling Engine capable of filling in gaps in missing sequences of various types. A strategy was introduced to look forward into subsequent data, enabling the Engine to improve the accuracy of the prediction by more than 30%. A Sequence Model based on Long Short-term Mem...
Päätekijä: | Nguyen, Phan Huy |
---|---|
Muut tekijät: | Goh Wooi Boon |
Aineistotyyppi: | Final Year Project (FYP) |
Kieli: | English |
Julkaistu: |
2017
|
Aiheet: | |
Linkit: | http://hdl.handle.net/10356/70503 |
Samankaltaisia teoksia
-
Recurrent neural networks for Apple stock price prediction
Tekijä: Huang, Melville Bin
Julkaistu: (2023) -
Predictive analysis of stock prices using gated recurrent neural network
Tekijä: Chew, Athena Yee Jun
Julkaistu: (2021) -
Convergence properties of recurrent neural network
Tekijä: Fei, Yong Gang
Julkaistu: (2011) -
Recurrent neural networks for time series prediction
Tekijä: Perez Orozco, B
Julkaistu: (2019) -
SeqSleepNet: end-to-end hierarchical recurrent neural network for sequence-to-sequence automatic sleep staging
Tekijä: Phan, H, et al.
Julkaistu: (2019)