Low power clock generators with digital calibration for sustainable building applications

The growth of human population on Earth has increased the awareness on the need for energy saving. The concept of smart building and life are proposed to connect all household appliances up to clouds to allow users to control these appliances with energy distribution in a smarter manner. With th...

Full description

Bibliographic Details
Main Author: Wang, Jiacheng
Other Authors: Goh Wang Ling
Format: Thesis-Doctor of Philosophy
Language:English
Published: Nanyang Technological University 2017
Subjects:
Online Access:http://hdl.handle.net/10356/70695
_version_ 1811683734616801280
author Wang, Jiacheng
author2 Goh Wang Ling
author_facet Goh Wang Ling
Wang, Jiacheng
author_sort Wang, Jiacheng
collection NTU
description The growth of human population on Earth has increased the awareness on the need for energy saving. The concept of smart building and life are proposed to connect all household appliances up to clouds to allow users to control these appliances with energy distribution in a smarter manner. With the expansion of mobile device usage and internet cloud applications, we are already moving to the big-data age. At the same time, the rapid developing digital signal processing technique requires the stable clock frequency due to different building environments, such as wide temperature range, variable supply voltage, sunshine time, humidity and so on. This thesis proposes two relaxation oscillator designs and an all-digital phase locked-loop (ADPLL) design as stable clock frequency generators for the sustainable building applications. The first proposed design presents a novel on-chip RC relaxation oscillator with split-capacitor integrator compensation loop technique to achieve a stable output frequency with environment temperature and supply voltage variations. It can provide a stable frequency signal at 13.5 MHz. Measurements results show that the output frequency has ±0.5% and ±0.5%/V variation with temperature range of −30◦C to 120◦C and power supply range of 1.5 − 2.1 V. Moreover, the power consumption of the design yields only 48.8 µW. The second design is also a relaxation oscillator with digital compensation technique to achieve a stable output frequency with environment temperature and supply voltage variations. The digital compensation scheme can avoid the power hungry analog op-amp integrator feedback loop. The digital method not only save more power in the long run, but is easier when comes to CMOS process scaling. Furthermore, an on-chip reference pulse generator is adopted for the compensation. The digital feedback loop tunes loop delay to adjust the output frequency. The test chips were fabricated in a 0.18- µm standard CMOS process. Effects of this digital compensation method has been verified to maintain frequency stability of the relaxation oscillator. The output frequency is stable at 12.77 MHz at 0.9-V power supply voltage. Measurement results showed that the output frequency has only 31ppm/◦C variation with temperature range of -30 to 120◦C after compensation. The frequency variation over the supply voltage is ±0.5%/V. Compared to other state-of-the-art designs, our design achieves better figure of merit (FoM) and has the smallest temperature coefficient. The total power consumption is 56.2 µW when all circuits are enabled. For long term operation, the power consumption can be scaled to only 12.8 µW in the main oscillator. After introducing the two relaxation oscillators, an all-digital PLL is implemented for digital processing clock signal. In order to reduce power consumption, the proposed ADPLL uses only a flip-flop as the phase detector. The injection locked technique is implemented in this design for jitter performance improvement. The measurement results show that the ADPLL can approach 101 dBc/Hz at 100 kHz offset frequency. This design is taped-out in GLOBALFOUDRIES 40-nm CMOS process, which only consume about 1.2 mW at 1-GHz output frequency. In future work, it is going to integrate the on-chip relaxation oscillator and digital PLL together to create an entire on-chip clock generation and distribution system.
first_indexed 2024-10-01T04:17:27Z
format Thesis-Doctor of Philosophy
id ntu-10356/70695
institution Nanyang Technological University
language English
last_indexed 2024-10-01T04:17:27Z
publishDate 2017
publisher Nanyang Technological University
record_format dspace
spelling ntu-10356/706952020-11-01T04:51:33Z Low power clock generators with digital calibration for sustainable building applications Wang, Jiacheng Goh Wang Ling Interdisciplinary Graduate School (IGS) DRNTU::Engineering::Electrical and electronic engineering::Semiconductors The growth of human population on Earth has increased the awareness on the need for energy saving. The concept of smart building and life are proposed to connect all household appliances up to clouds to allow users to control these appliances with energy distribution in a smarter manner. With the expansion of mobile device usage and internet cloud applications, we are already moving to the big-data age. At the same time, the rapid developing digital signal processing technique requires the stable clock frequency due to different building environments, such as wide temperature range, variable supply voltage, sunshine time, humidity and so on. This thesis proposes two relaxation oscillator designs and an all-digital phase locked-loop (ADPLL) design as stable clock frequency generators for the sustainable building applications. The first proposed design presents a novel on-chip RC relaxation oscillator with split-capacitor integrator compensation loop technique to achieve a stable output frequency with environment temperature and supply voltage variations. It can provide a stable frequency signal at 13.5 MHz. Measurements results show that the output frequency has ±0.5% and ±0.5%/V variation with temperature range of −30◦C to 120◦C and power supply range of 1.5 − 2.1 V. Moreover, the power consumption of the design yields only 48.8 µW. The second design is also a relaxation oscillator with digital compensation technique to achieve a stable output frequency with environment temperature and supply voltage variations. The digital compensation scheme can avoid the power hungry analog op-amp integrator feedback loop. The digital method not only save more power in the long run, but is easier when comes to CMOS process scaling. Furthermore, an on-chip reference pulse generator is adopted for the compensation. The digital feedback loop tunes loop delay to adjust the output frequency. The test chips were fabricated in a 0.18- µm standard CMOS process. Effects of this digital compensation method has been verified to maintain frequency stability of the relaxation oscillator. The output frequency is stable at 12.77 MHz at 0.9-V power supply voltage. Measurement results showed that the output frequency has only 31ppm/◦C variation with temperature range of -30 to 120◦C after compensation. The frequency variation over the supply voltage is ±0.5%/V. Compared to other state-of-the-art designs, our design achieves better figure of merit (FoM) and has the smallest temperature coefficient. The total power consumption is 56.2 µW when all circuits are enabled. For long term operation, the power consumption can be scaled to only 12.8 µW in the main oscillator. After introducing the two relaxation oscillators, an all-digital PLL is implemented for digital processing clock signal. In order to reduce power consumption, the proposed ADPLL uses only a flip-flop as the phase detector. The injection locked technique is implemented in this design for jitter performance improvement. The measurement results show that the ADPLL can approach 101 dBc/Hz at 100 kHz offset frequency. This design is taped-out in GLOBALFOUDRIES 40-nm CMOS process, which only consume about 1.2 mW at 1-GHz output frequency. In future work, it is going to integrate the on-chip relaxation oscillator and digital PLL together to create an entire on-chip clock generation and distribution system. Doctor of Philosophy (IGS) 2017-05-09T06:24:18Z 2017-05-09T06:24:18Z 2017 Thesis-Doctor of Philosophy Wang, J. (2017). Low power clock generators with digital calibration for sustainable building applications. Doctoral thesis, Nanyang Technological University, Singapore. http://hdl.handle.net/10356/70695 10.32657/10356/70695 en 156 p. application/pdf Nanyang Technological University
spellingShingle DRNTU::Engineering::Electrical and electronic engineering::Semiconductors
Wang, Jiacheng
Low power clock generators with digital calibration for sustainable building applications
title Low power clock generators with digital calibration for sustainable building applications
title_full Low power clock generators with digital calibration for sustainable building applications
title_fullStr Low power clock generators with digital calibration for sustainable building applications
title_full_unstemmed Low power clock generators with digital calibration for sustainable building applications
title_short Low power clock generators with digital calibration for sustainable building applications
title_sort low power clock generators with digital calibration for sustainable building applications
topic DRNTU::Engineering::Electrical and electronic engineering::Semiconductors
url http://hdl.handle.net/10356/70695
work_keys_str_mv AT wangjiacheng lowpowerclockgeneratorswithdigitalcalibrationforsustainablebuildingapplications