Development of DC/DC converter for VRB control

It is evident that the world will soon run out of fossil fuels and renewable energy sources such as solar power and wind power are getting utilised more and more in hopes to replace fossil fuels. With the help of DC microgrids, it is very possible to provide supply to consumers’ demand with renew...

Descripción completa

Detalles Bibliográficos
Autor principal: Lim, Guo Wei
Otros Autores: Wang Peng
Formato: Final Year Project (FYP)
Lenguaje:English
Publicado: 2017
Materias:
Acceso en línea:http://hdl.handle.net/10356/71644
Descripción
Sumario:It is evident that the world will soon run out of fossil fuels and renewable energy sources such as solar power and wind power are getting utilised more and more in hopes to replace fossil fuels. With the help of DC microgrids, it is very possible to provide supply to consumers’ demand with renewable energy sources. In a DC microgrid, one of the most important feature it has is the battery and the purpose of having a battery is to help with the supply and demand of the whole microgrid. To help integrate the battery into a DC microgrid, a DC/DC converter is needed. In this Final Year Project, the author would be developing a DC/DC converter for a Vanadium Redox Battery (VRB) that is commonly used in a DC microgrid. A DC/DC boost converter is built and by introducing control methods such as proportional-integral (PI) control, better control of the converter can be exercised to improve the efficiency of the converter. Implementations are also introduced during the project to further the author’s understanding on DC microgrid. Super-capacitor is another type of energy storage system that has characteristics as compared to a battery. Hence, droop control is introduced to ensure that the energy storage systems can be integrated properly so that maximum efficiency can be achieved.