Investigations of photonic nanojet properties using comsol based simulations

Optical microscopy has seen a myriad of advancements over the past four centuries with the development of the first optical microscope. While visualizing small matter had become much easier, it affected the resolution of the image adversely. This came from the diffraction limit, which meant that lig...

Full description

Bibliographic Details
Main Author: Deeksha Kinjavdekar
Other Authors: Manojit Pramanik
Format: Thesis
Language:English
Published: 2017
Subjects:
Online Access:http://hdl.handle.net/10356/72362
Description
Summary:Optical microscopy has seen a myriad of advancements over the past four centuries with the development of the first optical microscope. While visualizing small matter had become much easier, it affected the resolution of the image adversely. This came from the diffraction limit, which meant that light passing through an optical aperture tends to get diffracted, affecting the resolution of the resulting image. This drawback has ever since been a hurdle with optical microscopy. But, over the years, scientists and researchers have tried to eliminate it with various methods, one of them being the use of microspheres on the sample surface to converge the diffracted light over the observed sample. Many experiments have been performed to see how this new method can rectify the diffraction limit. This dissertation focuses on showing the different effects of parameters on the resolution of the PNJ in 2D and also tries the same in 3D. This approach is very useful in fabricating techniques to efficiently achieve the end result as is required by the scientists and researchers in optical microscopy