Controller design for high-frequency switch-mode DC-DC converters

DC-DC converters are commonly employed to perform the voltage conversions with high power-efficiencies; however, they require off-chip external filters that are bulky and costly in terms of board area. The trend in DC-DC converter design is to realize on-chip/fully-integrated DC-DC converters with s...

Full description

Bibliographic Details
Main Author: Rajendra Anojh Kumaran
Other Authors: Chang, Joseph Sylvester
Format: Thesis
Language:English
Published: 2017
Subjects:
Online Access:http://hdl.handle.net/10356/72588
_version_ 1811694474537992192
author Rajendra Anojh Kumaran
author2 Chang, Joseph Sylvester
author_facet Chang, Joseph Sylvester
Rajendra Anojh Kumaran
author_sort Rajendra Anojh Kumaran
collection NTU
description DC-DC converters are commonly employed to perform the voltage conversions with high power-efficiencies; however, they require off-chip external filters that are bulky and costly in terms of board area. The trend in DC-DC converter design is to realize on-chip/fully-integrated DC-DC converters with small on-chip filters. These DC-DC converters are particularly attractive for low-power portable applications. Reducing the size of the filter is done by increasing the switching-frequency since the output filter size is inversely proportional to the frequency. Since high switching-frequencies (≥10 MHz up to hundreds of MHz) are required, controllers for low-power DC-DC converters are often based on analog circuits rather than digital circuits, primarily due to their low power consumption, although the latter offers various advantages such as programmability, low sensitivity to process and parameter variations, and scalability to lower voltage and advanced CMOS technologies. This Master of Science project pertains to the analysis and design of a low-power digital controller and a multi-phase DC-DC converter topology for high-frequency fully-integrated switch-mode DC-DC converters. The first contribution of this project is the design of a high-frequency digital controller based on the Proportional-Integral-Derivative (PID) control algorithm. The difference equation which performs the compensation in the controller is (hardware) optimized to reduced its complexity while maintaining an equivalent mathematical operation. The optimization reduces the number of multipliers by 6, and adders by 4. Compared to the digital compensator without the hardware optimization, the power dissipation of the hardware optimized digital compensator is reduced by 90% when implemented using CMOS 180 nm. The DC-DC Buck converter is designed to operate at 100 MHz with 3.6 V supply to produce a fixed output of 1.8 V. Simulation results of the DC-DC converter, employing the controller, shows that the critically damped closed loop response is achieved with a settling time of 1us. Additionally, the filter capacitor values are designed such that output ripple is 1% of the output voltage. However, this could be compromised depending on the resolution of the A/D converter and the DPWM. With a 6-bit A/D converter and a 5 bit DPWM, the maximum output ripple at steady state is found to be within 5% of the output voltage. The second contribution of this project is the design of a multi-phase interleaving topology for high-frequency fully-integrated DC-DC converters. The output current ripple is perfectly cancelled by connecting two converters in parallel and controlling the switching stage from duty-cycle signals which are out-of-phase by 180o. Finally, the Inductor of the output filter is modelled using the packaging inductor of MQFP package, utilizing a combination of Bond-wire and Lead inductances. Simulation results ensure a 50% improvement on the peak-to-peak output current ripple, after the 2-phase design and output filter modelling is incorporated in to the analysis.
first_indexed 2024-10-01T07:08:09Z
format Thesis
id ntu-10356/72588
institution Nanyang Technological University
language English
last_indexed 2024-10-01T07:08:09Z
publishDate 2017
record_format dspace
spelling ntu-10356/725882023-07-04T15:05:32Z Controller design for high-frequency switch-mode DC-DC converters Rajendra Anojh Kumaran Chang, Joseph Sylvester School of Electrical and Electronic Engineering DRNTU::Engineering::Electrical and electronic engineering DC-DC converters are commonly employed to perform the voltage conversions with high power-efficiencies; however, they require off-chip external filters that are bulky and costly in terms of board area. The trend in DC-DC converter design is to realize on-chip/fully-integrated DC-DC converters with small on-chip filters. These DC-DC converters are particularly attractive for low-power portable applications. Reducing the size of the filter is done by increasing the switching-frequency since the output filter size is inversely proportional to the frequency. Since high switching-frequencies (≥10 MHz up to hundreds of MHz) are required, controllers for low-power DC-DC converters are often based on analog circuits rather than digital circuits, primarily due to their low power consumption, although the latter offers various advantages such as programmability, low sensitivity to process and parameter variations, and scalability to lower voltage and advanced CMOS technologies. This Master of Science project pertains to the analysis and design of a low-power digital controller and a multi-phase DC-DC converter topology for high-frequency fully-integrated switch-mode DC-DC converters. The first contribution of this project is the design of a high-frequency digital controller based on the Proportional-Integral-Derivative (PID) control algorithm. The difference equation which performs the compensation in the controller is (hardware) optimized to reduced its complexity while maintaining an equivalent mathematical operation. The optimization reduces the number of multipliers by 6, and adders by 4. Compared to the digital compensator without the hardware optimization, the power dissipation of the hardware optimized digital compensator is reduced by 90% when implemented using CMOS 180 nm. The DC-DC Buck converter is designed to operate at 100 MHz with 3.6 V supply to produce a fixed output of 1.8 V. Simulation results of the DC-DC converter, employing the controller, shows that the critically damped closed loop response is achieved with a settling time of 1us. Additionally, the filter capacitor values are designed such that output ripple is 1% of the output voltage. However, this could be compromised depending on the resolution of the A/D converter and the DPWM. With a 6-bit A/D converter and a 5 bit DPWM, the maximum output ripple at steady state is found to be within 5% of the output voltage. The second contribution of this project is the design of a multi-phase interleaving topology for high-frequency fully-integrated DC-DC converters. The output current ripple is perfectly cancelled by connecting two converters in parallel and controlling the switching stage from duty-cycle signals which are out-of-phase by 180o. Finally, the Inductor of the output filter is modelled using the packaging inductor of MQFP package, utilizing a combination of Bond-wire and Lead inductances. Simulation results ensure a 50% improvement on the peak-to-peak output current ripple, after the 2-phase design and output filter modelling is incorporated in to the analysis. Master of Science (Electronics) 2017-08-29T07:03:27Z 2017-08-29T07:03:27Z 2017 Thesis http://hdl.handle.net/10356/72588 en 52 p. application/pdf
spellingShingle DRNTU::Engineering::Electrical and electronic engineering
Rajendra Anojh Kumaran
Controller design for high-frequency switch-mode DC-DC converters
title Controller design for high-frequency switch-mode DC-DC converters
title_full Controller design for high-frequency switch-mode DC-DC converters
title_fullStr Controller design for high-frequency switch-mode DC-DC converters
title_full_unstemmed Controller design for high-frequency switch-mode DC-DC converters
title_short Controller design for high-frequency switch-mode DC-DC converters
title_sort controller design for high frequency switch mode dc dc converters
topic DRNTU::Engineering::Electrical and electronic engineering
url http://hdl.handle.net/10356/72588
work_keys_str_mv AT rajendraanojhkumaran controllerdesignforhighfrequencyswitchmodedcdcconverters