Amino acids stimulate the endosome-to-golgi trafficking through ragulator and small GTPase Arl5

The endosome-to-Golgi trafficking pathway is an important post-Golgi recycling route. However, there is a lack of knowledge about the regulatory mechanisms behind intracellular membrane trafficking processes in response to extracellular signals. In this study, we found that nutrient starvation rever...

Full description

Bibliographic Details
Main Author: Chen, Bing
Other Authors: Lu Lei
Format: Thesis
Language:English
Published: 2018
Subjects:
Online Access:http://hdl.handle.net/10356/73545
Description
Summary:The endosome-to-Golgi trafficking pathway is an important post-Golgi recycling route. However, there is a lack of knowledge about the regulatory mechanisms behind intracellular membrane trafficking processes in response to extracellular signals. In this study, we found that nutrient starvation reversibly caused the trans-Golgi network (TGN) membrane proteins, such as furin and CI-M6PR, translocate from the TGN to the endosomal pool. Using a series of CD8a tagged TGN membrane proteins as reporters, we demonstrated that nutrient could stimulate the endosome-to-Golgi trafficking. We found that amino acids (AAs), especially glutamine, but not growth factors or glucose, were the key factors regulating the endosome-to-Golgi trafficking in mammalian cells. Moreover, the stimulation effect of AAs on endosome-to-Golgi trafficking is probably ubiquitous, as it is observed in multiple cell lines. Thus, we made a novel discovery that the endosome-to-Golgi trafficking of cargos is inhibited and stimulated by the absence and presence, respectively, of AAs. Inspired by the mechanism of the AA-induced mTORC1 activation pathway, we hypothesized that the AA-stimulated endosome-to-Golgi trafficking pathway might share similar machinery. By selectively inhibiting or depleting each component of the AA-stimulated mTORC1 signaling pathway, it was revealed that SLC38A9, v-ATPase and Ragulator, but not Rag GTPases or mTORC1, are essential for AA-stimulated endosome-to-Golgi trafficking. To accomplish the delivery of cargos from endosomes to the Golgi, various factors, including tethering factors, SNAREs and the small GTPases from the Rab and Arf-like family, are involved. Arl5, an Arf-like family small GTPases, has been found to regulate the membrane trafficking between the endosome and the Golgi. There are three closely related paralogs of Arl5 in vertebrates – Arl5a, b and c, where Arl5a, Arl5b are the dominant ones. Endogenously and exogenously expressed Arl5a and Arl5b were found to localize in the Golgi, while human Arl5c did not display a Golgi localization. Using yeast two-hybrid, pull-down and immunoprecipitation assays, we found that Arl5 interacts with Lamtor1. Live-cell imaging revealed that Arl5b colocalizes with Lamtor1 at the endosome and lysosome. Furthermore, both Arl5 and its effector, the Golgi-associated retrograde protein complex (GARP), are required for AA-stimulated trafficking. We have therefore identified a mechanistic connection between nutrient signaling and the endosome-to-Golgi trafficking pathway, whereby SLC38A9 and v-ATPase sense AA-sufficiency. Moreover, the interaction between Lamtor1 and Arl5 might activate Arl5, which, together with its effector GARP, a tethering factor, likely facilitates the endosome-to-Golgi trafficking.