Deep learning for sentence/text classification

Deep Learning Architectures have been achieving state-of-the-art results in many application scenarios. Particularly, the performance of Deep Convolution Neural Networks (Deep ConvNets) in computer vision tasks is incontestable. The wave of ConvNets is sweeping through other applications other than...

Full description

Bibliographic Details
Main Author: Yu, Rongqian
Other Authors: Ponnuthurai N. Suganthan
Format: Thesis
Language:English
Published: 2018
Subjects:
Online Access:http://hdl.handle.net/10356/76043
Description
Summary:Deep Learning Architectures have been achieving state-of-the-art results in many application scenarios. Particularly, the performance of Deep Convolution Neural Networks (Deep ConvNets) in computer vision tasks is incontestable. The wave of ConvNets is sweeping through other applications other than vision tasks. There are some instances of ConvNets used for Natural Language Processing (NLP) tasks such as sentence/text classification. The objective of this project is applying Deep Learning models such as Recurrent Neural Networks, ConvNets for sentence/text classification tasks and suggest ways to improve their performance. In this design, I used CNN(Convolution neural network) network structure as my framework, using python3 programming language and PyTorch deep learning tool to complete the preparation of the software and experiments on the remote server in the laboratory to get the final result(using GPU acceleration).