One-step hydrothermal synthesis of rare earth/W-codoped VO2 nanoparticles: Reduced phase transition temperature and improved thermochromic properties

As a reversible thermochromic material, vanadium dioxide (VO2) is a promising candidate for smart window applications. The trade-off between the integrated visible transmission (Tlum) and the solar modulating ability (ΔTsol), as well as the high phase transition temperature (τc~68 °C) are regarded a...

Full description

Bibliographic Details
Main Authors: Wang, Ning, Goh, Qing Sheng, Lee, Pei Lin, Magdassi, Shlomo, Long, Yi
Other Authors: School of Materials Science & Engineering
Format: Journal Article
Language:English
Published: 2017
Subjects:
Online Access:https://hdl.handle.net/10356/80756
http://hdl.handle.net/10220/42445
Description
Summary:As a reversible thermochromic material, vanadium dioxide (VO2) is a promising candidate for smart window applications. The trade-off between the integrated visible transmission (Tlum) and the solar modulating ability (ΔTsol), as well as the high phase transition temperature (τc~68 °C) are regarded as the main obstacles for practical applications of pure VO2 nanomaterials. The combination of both high τc reducing efficiency of W and improving Tlum/ΔTsol properties of RE (rare earth: Eu, Tb), herein lies the purpose of RE/W-codoping to enhance the thermochromic performance. The RE/W-codoped VO2 nanoparticles were synthesized under hydrothermal conditions, and exhibited grain size of less than 100 nm. The smart window which was fabricated by coating RE/W-codoped VO2 nanoparticles onto glass, exhibits a thermochromic performance with a combination Tlum= 40%, ΔTsol= 6.3%, τc= 40.8 °C or Tlum= 63%, ΔTsol= 3.6%, τc= 31.9 °C, indicating the largely reduced absorption compared with the single W doping. Under the RE/W-codoping conditions, it was found that the ionic radius of the RE3+ cations controlled the crystallinity of the VO2 particles and the electron/hole carrier counteraction as well as the competition between the strain and the hole carrier played a vital role in modulating the τc of the VO2 products. The findings should be meaningful for investigating the codoping mechanisms for VO2 nanomaterials.