Experimental evaluation of arm motion using tri-axial accelerometers based on factorized quaternion approach
In this paper, we evaluate a factorized quaternion approach for determining the arm orientation experimentally. The proposed approach uses tri-axial accelerometers with consideration of anatomical and sensor constraints. Experiments have been conducted using a wireless sensor network that comprises...
Main Authors: | , |
---|---|
Other Authors: | |
Format: | Conference Paper |
Language: | English |
Published: |
2013
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/84649 http://hdl.handle.net/10220/12035 |
Summary: | In this paper, we evaluate a factorized quaternion approach for determining the arm orientation experimentally. The proposed approach uses tri-axial accelerometers with consideration of anatomical and sensor constraints. Experiments have been conducted using a wireless sensor network that comprises of tri-axial accelerometer sensor nodes attached to the arm. The results have been benchmarked with a commercial inertial measurement unit to validate the performance and advantages of this new system. Comparable performance in terms of accuracy has been obtained at a much reduced cost and lower power consumption. |
---|