Three-dimensional dynamics of thin liquid films on vertical cylinders with Marangoni effect
The effects of thermocapillary force on the three dimensional dynamics of thin liquid films flowing down a uniformly heated vertical cylinder are investigated using a thin film model. Linear and nonlinear analyses predict the existence of a non-axisymmetric mode due to the Marangoni effect. Symmetry...
Main Authors: | , |
---|---|
Other Authors: | |
Format: | Journal Article |
Language: | English |
Published: |
2017
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/84962 http://hdl.handle.net/10220/42081 |
Summary: | The effects of thermocapillary force on the three dimensional dynamics of thin liquid films flowing down a uniformly heated vertical cylinder are investigated using a thin film model. Linear and nonlinear analyses predict the existence of a non-axisymmetric mode due to the Marangoni effect. Symmetry-breaking of axisymmetric steady traveling waves is observed when the Marangoni number exceeds a critical value. Linear stability analysis demonstrates that the steady traveling wave can be unstable to azimuthal disturbances due to the Marangoni effect, leading to the formation of non-axisymmetric patterns. |
---|