Bridging images and natural language with deep learning
Throughout the thesis, I demonstrate how each of the proposed methods can bridge the gap between images and natural language. Experimental results on public vision and language datasets have shown all these methods are able to obtain significant performance improvement on vision and language tasks s...
Главный автор: | Gu, Jiuxiang |
---|---|
Другие авторы: | Cai Jianfei |
Формат: | Диссертация |
Язык: | English |
Опубликовано: |
2019
|
Предметы: | |
Online-ссылка: | https://hdl.handle.net/10356/85399 http://hdl.handle.net/10220/50454 |
Схожие документы
-
Deep learning for medical image analysis
по: Yang, Ivan Sze Yuan
Опубликовано: (2020) -
Image artefact removal using deep learning
по: Sanchari, Das
Опубликовано: (2022) -
Image and video generation via deep learning
по: Jiang, Liming
Опубликовано: (2023) -
Deep disentangling learning for real-world image enlightening and restoration
по: Chan, Yi Xuan
Опубликовано: (2022) -
Deep image enhancement
по: Han, Jun
Опубликовано: (2021)