Numerical investigations of unconstrained melting of nano-enhanced phase change material (NEPCM) inside a spherical container
This paper presents a numerical study of unconstrained melting of nano-enhanced phase change materials (NEPCM) inside a spherical container using RT27 and copper particles as base material and nano-particle, respectively. Numerical studies are performed for three different Stefan number and volume f...
Main Authors: | , , |
---|---|
Other Authors: | |
Format: | Journal Article |
Language: | English |
Published: |
2013
|
Online Access: | https://hdl.handle.net/10356/85758 http://hdl.handle.net/10220/17048 |
Summary: | This paper presents a numerical study of unconstrained melting of nano-enhanced phase change materials (NEPCM) inside a spherical container using RT27 and copper particles as base material and nano-particle, respectively. Numerical studies are performed for three different Stefan number and volume fraction of nano-particles with an initial sub-cooling of 6 °C. Transient numerical simulations are performed for axi-symmetric melting inside a sphere. The simulation results show that the nano-particles cause an increase in thermal conductivity of NEPCM compared to conventional PCM. The enhancement in thermal conductivity with a decrease in latent heat results in higher melting rate of NEPCM. |
---|