Fish-inspired self-powered microelectromechanical flow sensor with biomimetic hydrogel cupula

Flow sensors inspired from lateral line neuromasts of cavefish have been widely investigated over decades to develop artificial sensors. The design and function of these natural sensors have been mimicked using microelectromechanical systems (MEMS) based sensors. However, there is more to the overal...

Full description

Bibliographic Details
Main Authors: Bora, M., Kottapalli, A. G. P., Miao, Jianmin, Triantafyllou, M. S.
Other Authors: School of Mechanical and Aerospace Engineering
Format: Journal Article
Language:English
Published: 2017
Subjects:
Online Access:https://hdl.handle.net/10356/86529
http://hdl.handle.net/10220/44046
_version_ 1811681674034937856
author Bora, M.
Kottapalli, A. G. P.
Miao, Jianmin
Triantafyllou, M. S.
author2 School of Mechanical and Aerospace Engineering
author_facet School of Mechanical and Aerospace Engineering
Bora, M.
Kottapalli, A. G. P.
Miao, Jianmin
Triantafyllou, M. S.
author_sort Bora, M.
collection NTU
description Flow sensors inspired from lateral line neuromasts of cavefish have been widely investigated over decades to develop artificial sensors. The design and function of these natural sensors have been mimicked using microelectromechanical systems (MEMS) based sensors. However, there is more to the overall function and performance of these natural sensors. Mimicking the morphology and material properties of specialized structures like a cupula would significantly help to improve the existing designs. Toward this goal, the paper reports development of a canal neuromast inspired piezoelectric sensor and investigates the role of a biomimetic cupula in influencing the performance of the sensor. The sensor was developed using microfabrication technology and tested for the detection of the steady-state and oscillatory flows. An artificial cupula was synthesized using a soft hydrogel material and characterized for morphology and mechanical properties. Results show that the artificial cupula had a porous structure and high mechanical strength similar to the biological canal neuromast. Experimental results show the ability of these sensors to measure the steady-state flows accurately, and for oscillatory flows, an increase in the sensor output was detected in the presence of the cupula structure. This is the first time a MEMS based piezoelectric sensor is demonstrated to detect steady-state flows using the principle of vortex-induced vibrations. The bioinspired sensor developed in this work would be investigated further to understand the role of the cupula structure in biological flow sensing mechanisms, thus contributing toward the design of highly sensitive and efficient sensors for various applications such as underwater robotics, microfluidics, and biomedical devices.
first_indexed 2024-10-01T03:44:42Z
format Journal Article
id ntu-10356/86529
institution Nanyang Technological University
language English
last_indexed 2024-10-01T03:44:42Z
publishDate 2017
record_format dspace
spelling ntu-10356/865292023-03-04T17:16:00Z Fish-inspired self-powered microelectromechanical flow sensor with biomimetic hydrogel cupula Bora, M. Kottapalli, A. G. P. Miao, Jianmin Triantafyllou, M. S. School of Mechanical and Aerospace Engineering Biomimetics Microelectromechanical systems Flow sensors inspired from lateral line neuromasts of cavefish have been widely investigated over decades to develop artificial sensors. The design and function of these natural sensors have been mimicked using microelectromechanical systems (MEMS) based sensors. However, there is more to the overall function and performance of these natural sensors. Mimicking the morphology and material properties of specialized structures like a cupula would significantly help to improve the existing designs. Toward this goal, the paper reports development of a canal neuromast inspired piezoelectric sensor and investigates the role of a biomimetic cupula in influencing the performance of the sensor. The sensor was developed using microfabrication technology and tested for the detection of the steady-state and oscillatory flows. An artificial cupula was synthesized using a soft hydrogel material and characterized for morphology and mechanical properties. Results show that the artificial cupula had a porous structure and high mechanical strength similar to the biological canal neuromast. Experimental results show the ability of these sensors to measure the steady-state flows accurately, and for oscillatory flows, an increase in the sensor output was detected in the presence of the cupula structure. This is the first time a MEMS based piezoelectric sensor is demonstrated to detect steady-state flows using the principle of vortex-induced vibrations. The bioinspired sensor developed in this work would be investigated further to understand the role of the cupula structure in biological flow sensing mechanisms, thus contributing toward the design of highly sensitive and efficient sensors for various applications such as underwater robotics, microfluidics, and biomedical devices. NRF (Natl Research Foundation, S’pore) Published version 2017-11-15T07:30:42Z 2019-12-06T16:24:03Z 2017-11-15T07:30:42Z 2019-12-06T16:24:03Z 2017 Journal Article Bora, M., Kottapalli, A. G. P., Miao, J., & Triantafyllou, M. S. (2017). Fish-inspired self-powered microelectromechanical flow sensor with biomimetic hydrogel cupula. APL Materials, 5(10), 104902-. 2166-532X https://hdl.handle.net/10356/86529 http://hdl.handle.net/10220/44046 10.1063/1.5009128 en APL Materials © 2017 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). 6 p. application/pdf
spellingShingle Biomimetics
Microelectromechanical systems
Bora, M.
Kottapalli, A. G. P.
Miao, Jianmin
Triantafyllou, M. S.
Fish-inspired self-powered microelectromechanical flow sensor with biomimetic hydrogel cupula
title Fish-inspired self-powered microelectromechanical flow sensor with biomimetic hydrogel cupula
title_full Fish-inspired self-powered microelectromechanical flow sensor with biomimetic hydrogel cupula
title_fullStr Fish-inspired self-powered microelectromechanical flow sensor with biomimetic hydrogel cupula
title_full_unstemmed Fish-inspired self-powered microelectromechanical flow sensor with biomimetic hydrogel cupula
title_short Fish-inspired self-powered microelectromechanical flow sensor with biomimetic hydrogel cupula
title_sort fish inspired self powered microelectromechanical flow sensor with biomimetic hydrogel cupula
topic Biomimetics
Microelectromechanical systems
url https://hdl.handle.net/10356/86529
http://hdl.handle.net/10220/44046
work_keys_str_mv AT boram fishinspiredselfpoweredmicroelectromechanicalflowsensorwithbiomimetichydrogelcupula
AT kottapalliagp fishinspiredselfpoweredmicroelectromechanicalflowsensorwithbiomimetichydrogelcupula
AT miaojianmin fishinspiredselfpoweredmicroelectromechanicalflowsensorwithbiomimetichydrogelcupula
AT triantafylloums fishinspiredselfpoweredmicroelectromechanicalflowsensorwithbiomimetichydrogelcupula