Combining convolutional neural network and distance distribution matrix for identification of congestive heart failure
Congestive heart failure (CHF) is a serious pathophysiological condition with high morbidity and mortality, which is hard to predict and diagnose in early age. Artificial intelligence and deep learning combining with cardiac rhythms and physiological time series provide a potential to help in solvin...
主要な著者: | Li, Yaowei, Zhang, Yao, Zhao, Lina, Zhang, Yang, Liu, Chengyu, Zhang, Li, Zhang, Liuxin, Li, Zhensheng, Wang, Binhua, Ng, Eyk, Li, Jianqing, He, Zhiqiang |
---|---|
その他の著者: | School of Mechanical and Aerospace Engineering |
フォーマット: | Journal Article |
言語: | English |
出版事項: |
2018
|
主題: | |
オンライン・アクセス: | https://hdl.handle.net/10356/88148 http://hdl.handle.net/10220/45646 |
類似資料
-
Heart failure : pharmacological management /
著者:: Feldman, Arthur M. (Arthur Michael), 1949-
出版事項: (2006) -
An improved UNet++ model for congestive heart failure diagnosis using short-term RR intervals
著者:: Lei, Meng, 等
出版事項: (2021) -
Heart failure : molecules, mechanisms and therapeutic targets /
著者:: Novartis Foundation
出版事項: (2006) -
Heart failure : device management /
著者:: Feldman, Arthur M. (Arthur Michael), 1949-
出版事項: (2010) -
Road congestion pricing in Europe : implications for the United States /
著者:: Richardson, Harry Ward, 等
出版事項: (2008)