Semiconducting Polymer Nanoenzymes with Photothermic Activity for Enhanced Cancer Therapy

Regulation of enzyme activity is fundamentally challenging but practically meaningful for biology and medicine. However, noninvasive remote control of enzyme activity in living systems has been rarely demonstrated and exploited for therapy. Herein, we synthesize a semiconducting polymer nanoenzyme w...

Full description

Bibliographic Details
Main Authors: Li, Jingchao, Xie, Chen, Huang, Jiaguo, Jiang, Yuyan, Miao, Qingqing, Pu, Kanyi
Other Authors: School of Chemical and Biomedical Engineering
Format: Journal Article
Language:English
Published: 2018
Subjects:
Online Access:https://hdl.handle.net/10356/88819
http://hdl.handle.net/10220/44769
Description
Summary:Regulation of enzyme activity is fundamentally challenging but practically meaningful for biology and medicine. However, noninvasive remote control of enzyme activity in living systems has been rarely demonstrated and exploited for therapy. Herein, we synthesize a semiconducting polymer nanoenzyme with photothermic activity for enhanced cancer therapy. Upon near‐infrared (NIR) light irradiation, the activity of the nanoenzyme can be enhanced by 3.5‐fold to efficiently digest collagen in the tumor extracellular matrix (ECM), leading to enhanced nanoparticle accumulation in tumors and consequently improved photothermal therapy (PTT). This study thus provides a promising strategy to remotely regulate enzyme activity for cancer therapy.