Stable isotopes of clay minerals from autoclave tests of oil sands : implications for clay formation during steaming of Alberta Clearwater oil sands

In an effort to evaluate mineral-water isotopic exchange during cyclic steam stimulation (CSS), solutions and <2 μm berthierine-dominated solids from the Clearwater Formation oil sands of Alberta, Canada were analyzed for stable isotope compositions before and after reaction in autoclaves for 100...

Full description

Bibliographic Details
Main Authors: He, Shaoneng, Longstaffe, Fred J., Zhou, Zhihong
Other Authors: Earth Observatory of Singapore
Format: Journal Article
Language:English
Published: 2019
Subjects:
Online Access:https://hdl.handle.net/10356/89755
http://hdl.handle.net/10220/48068
Description
Summary:In an effort to evaluate mineral-water isotopic exchange during cyclic steam stimulation (CSS), solutions and <2 μm berthierine-dominated solids from the Clearwater Formation oil sands of Alberta, Canada were analyzed for stable isotope compositions before and after reaction in autoclaves for 1008 hours at 250°C. There was no significant change in solution δ18O and δ2H, which is consisten with the high water/mineral ratio used in the experiments. The solids showed a marked decrease in both δ18O and δ2H following the experiments. Pre-run solids have δ18O of +9.5 to +12.9 ‰ and δ2H of −114 to −113 ‰, whereas post-run solids have δ18O of −4.7 to +2.1 ‰ and δ2H of −147 to −128 ‰. Neither oxygen- nor hydrogen-isotope equilibrium was established between the solids and the solutions. Calculation suggests that oxygen-isotope exchange (44-58%) was greater between the solids and solutions than was the case for hydrogen isotopes (23 to 50 %). We propose that this behaviour resulted from partial inheritance of the pre-run berthierine structure during formation of the post-run smectite, chlorite-smectite and chlorite. This process confounds the use of clay mineral stable isotope compositions as a temperature indicator of in situ steam/steam condensate interaction with oil-sands reservoirs. The results also suggest an additional mechanism by which new clay minerals can be formed during CSS-related, artificial diagenesis.