Geodetic Constraints of the 2017 M w 7.3 Sarpol Zahab, Iran Earthquake, and Its Implications on the Structure and Mechanics of the Northwest Zagros Thrust-Fold Belt
We reveal transient surface deformation following the 2017 Mw7.3 Sarpol Zahab (Iran) earthquake using Interferometric Synthetic Aperture Radar (InSAR) measurements. Based on the coseismic interferograms derived from the Advanced Land Observing Satellite‐2 (ALOS‐2) data, the preferred slip model of t...
Main Authors: | , , , , , , , |
---|---|
Other Authors: | |
Format: | Journal Article |
Language: | English |
Published: |
2018
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/89804 http://hdl.handle.net/10220/46388 |
_version_ | 1811684525128810496 |
---|---|
author | Feng, Wanpeng Samsonov, Sergey Almeida, Rafael Yassaghi, Ali Li, Junhua Qiu, Qiang Li, Peng Zheng, Wenjun |
author2 | Asian School of the Environment |
author_facet | Asian School of the Environment Feng, Wanpeng Samsonov, Sergey Almeida, Rafael Yassaghi, Ali Li, Junhua Qiu, Qiang Li, Peng Zheng, Wenjun |
author_sort | Feng, Wanpeng |
collection | NTU |
description | We reveal transient surface deformation following the 2017 Mw7.3 Sarpol Zahab (Iran) earthquake using Interferometric Synthetic Aperture Radar (InSAR) measurements. Based on the coseismic interferograms derived from the Advanced Land Observing Satellite‐2 (ALOS‐2) data, the preferred slip model of the earthquake has a centroid depth of 14.5 ± 4 km and suggests that a basement fault is most likely responsible for the 2017 earthquake in the northwest Zagros fold‐thrust belt zone. Two slip asperities with a maximum slip of 6 m separated by 16 km are observed in the best fitting slip model. The accumulated afterslip in the first month after the mainshock determined from the Sentinel‐1 postseismic interferograms reveals a slip distribution that lies immediately updip of the coseismic slip, implying that frictional properties of the fault vary along the rupture patch. The Bamo Mount in the earthquake area was uplifted by approximately 1 m during the earthquake. We suggest that local topographic growth from both seismic and aseismic faulting behaviors is common within the Zagros fold‐thrust belt zone based on our findings regarding the 2017 earthquake and other significant events in the region. |
first_indexed | 2024-10-01T04:30:01Z |
format | Journal Article |
id | ntu-10356/89804 |
institution | Nanyang Technological University |
language | English |
last_indexed | 2024-10-01T04:30:01Z |
publishDate | 2018 |
record_format | dspace |
spelling | ntu-10356/898042020-09-26T21:28:57Z Geodetic Constraints of the 2017 M w 7.3 Sarpol Zahab, Iran Earthquake, and Its Implications on the Structure and Mechanics of the Northwest Zagros Thrust-Fold Belt Feng, Wanpeng Samsonov, Sergey Almeida, Rafael Yassaghi, Ali Li, Junhua Qiu, Qiang Li, Peng Zheng, Wenjun Asian School of the Environment Earth Observatory of Singapore DRNTU::Science::Geology Sarpol Zahab Earthquake Afterslip We reveal transient surface deformation following the 2017 Mw7.3 Sarpol Zahab (Iran) earthquake using Interferometric Synthetic Aperture Radar (InSAR) measurements. Based on the coseismic interferograms derived from the Advanced Land Observing Satellite‐2 (ALOS‐2) data, the preferred slip model of the earthquake has a centroid depth of 14.5 ± 4 km and suggests that a basement fault is most likely responsible for the 2017 earthquake in the northwest Zagros fold‐thrust belt zone. Two slip asperities with a maximum slip of 6 m separated by 16 km are observed in the best fitting slip model. The accumulated afterslip in the first month after the mainshock determined from the Sentinel‐1 postseismic interferograms reveals a slip distribution that lies immediately updip of the coseismic slip, implying that frictional properties of the fault vary along the rupture patch. The Bamo Mount in the earthquake area was uplifted by approximately 1 m during the earthquake. We suggest that local topographic growth from both seismic and aseismic faulting behaviors is common within the Zagros fold‐thrust belt zone based on our findings regarding the 2017 earthquake and other significant events in the region. Published version 2018-10-19T06:32:26Z 2019-12-06T17:33:52Z 2018-10-19T06:32:26Z 2019-12-06T17:33:52Z 2018 Journal Article Feng, W., Samsonov, S., Almeida, R., Yassaghi, A., Li, J., Qiu, Q., . . . Zheng, W. (2018). Geodetic Constraints of the 2017 Mw 7.3 Sarpol Zahab, Iran Earthquake, and Its Implications on the Structure and Mechanics of the Northwest Zagros Thrust-Fold Belt. Geophysical Research Letters, 45(14), 6853-6861. doi:10.1029/2018GL078577 0094-8276 https://hdl.handle.net/10356/89804 http://hdl.handle.net/10220/46388 10.1029/2018GL078577 en Geophysical Research Letters © 2018 American Geophysical Union. This paper was published in Geophysical Research Letters and is made available as an electronic reprint (preprint) with permission of American Geophysical Union. The published version is available at: [http://dx.doi.org/10.1029/2018GL078577]. One print or electronic copy may be made for personal use only. Systematic or multiple reproduction, distribution to multiple locations via electronic or other means, duplication of any material in this paper for a fee or for commercial purposes, or modification of the content of the paper is prohibited and is subject to penalties under law. 9 p. application/pdf |
spellingShingle | DRNTU::Science::Geology Sarpol Zahab Earthquake Afterslip Feng, Wanpeng Samsonov, Sergey Almeida, Rafael Yassaghi, Ali Li, Junhua Qiu, Qiang Li, Peng Zheng, Wenjun Geodetic Constraints of the 2017 M w 7.3 Sarpol Zahab, Iran Earthquake, and Its Implications on the Structure and Mechanics of the Northwest Zagros Thrust-Fold Belt |
title | Geodetic Constraints of the 2017 M
w
7.3 Sarpol Zahab, Iran Earthquake, and Its Implications on the Structure and Mechanics of the Northwest Zagros Thrust-Fold Belt |
title_full | Geodetic Constraints of the 2017 M
w
7.3 Sarpol Zahab, Iran Earthquake, and Its Implications on the Structure and Mechanics of the Northwest Zagros Thrust-Fold Belt |
title_fullStr | Geodetic Constraints of the 2017 M
w
7.3 Sarpol Zahab, Iran Earthquake, and Its Implications on the Structure and Mechanics of the Northwest Zagros Thrust-Fold Belt |
title_full_unstemmed | Geodetic Constraints of the 2017 M
w
7.3 Sarpol Zahab, Iran Earthquake, and Its Implications on the Structure and Mechanics of the Northwest Zagros Thrust-Fold Belt |
title_short | Geodetic Constraints of the 2017 M
w
7.3 Sarpol Zahab, Iran Earthquake, and Its Implications on the Structure and Mechanics of the Northwest Zagros Thrust-Fold Belt |
title_sort | geodetic constraints of the 2017 m w 7 3 sarpol zahab iran earthquake and its implications on the structure and mechanics of the northwest zagros thrust fold belt |
topic | DRNTU::Science::Geology Sarpol Zahab Earthquake Afterslip |
url | https://hdl.handle.net/10356/89804 http://hdl.handle.net/10220/46388 |
work_keys_str_mv | AT fengwanpeng geodeticconstraintsofthe2017mw73sarpolzahabiranearthquakeanditsimplicationsonthestructureandmechanicsofthenorthwestzagrosthrustfoldbelt AT samsonovsergey geodeticconstraintsofthe2017mw73sarpolzahabiranearthquakeanditsimplicationsonthestructureandmechanicsofthenorthwestzagrosthrustfoldbelt AT almeidarafael geodeticconstraintsofthe2017mw73sarpolzahabiranearthquakeanditsimplicationsonthestructureandmechanicsofthenorthwestzagrosthrustfoldbelt AT yassaghiali geodeticconstraintsofthe2017mw73sarpolzahabiranearthquakeanditsimplicationsonthestructureandmechanicsofthenorthwestzagrosthrustfoldbelt AT lijunhua geodeticconstraintsofthe2017mw73sarpolzahabiranearthquakeanditsimplicationsonthestructureandmechanicsofthenorthwestzagrosthrustfoldbelt AT qiuqiang geodeticconstraintsofthe2017mw73sarpolzahabiranearthquakeanditsimplicationsonthestructureandmechanicsofthenorthwestzagrosthrustfoldbelt AT lipeng geodeticconstraintsofthe2017mw73sarpolzahabiranearthquakeanditsimplicationsonthestructureandmechanicsofthenorthwestzagrosthrustfoldbelt AT zhengwenjun geodeticconstraintsofthe2017mw73sarpolzahabiranearthquakeanditsimplicationsonthestructureandmechanicsofthenorthwestzagrosthrustfoldbelt |