Efficient visible light modulation based on electrically tunable all dielectric metasurfaces embedded in thin-layer nematic liquid crystals
All-dielectric metasurfaces have attracted attention for highly efficient visible light manipulation. So far, however, they are mostly passive devices, while those allowing dynamic control remain a challenge. A highly efficient tuning mechanism is immersing the metasurface in a birefringent liquid c...
Main Authors: | , , , , , , , |
---|---|
Other Authors: | |
Format: | Journal Article |
Language: | English |
Published: |
2019
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/89856 http://hdl.handle.net/10220/49331 |
_version_ | 1824453787364884480 |
---|---|
author | Sun, Mingyu Xu, Xuewu Sun, Xiao Wei Liang, Xin’an Valuckas, Vytautas Zheng, Yuanjin Paniagua-Domínguez, Ramón Kuznetsov, Arseniy I. |
author2 | School of Electrical and Electronic Engineering |
author_facet | School of Electrical and Electronic Engineering Sun, Mingyu Xu, Xuewu Sun, Xiao Wei Liang, Xin’an Valuckas, Vytautas Zheng, Yuanjin Paniagua-Domínguez, Ramón Kuznetsov, Arseniy I. |
author_sort | Sun, Mingyu |
collection | NTU |
description | All-dielectric metasurfaces have attracted attention for highly efficient visible light manipulation. So far, however, they are mostly passive devices, while those allowing dynamic control remain a challenge. A highly efficient tuning mechanism is immersing the metasurface in a birefringent liquid crystal (LC), whose refractive index can be electrically controlled. Here, an all-dielectric tunable metasurface is demonstrated based on this concept, operating at visible frequencies and based on TiO2 nanodisks embedded in a thin LC layer. Small driving voltages from 3~5 V are sufficient to tune the metasurface resonances, with an associated transmission modulation of more than 65%. The metasurface optical responses, including the observed electric and magnetic dipole resonance shifts as well as the interfacial anchoring effect of the LC induced by the presence of the nanostructures, are systematically discussed. The dynamic tuning observed in the transmission spectra can pave the way to dynamically tunable metasurface devices for efficient visible light modulation applications. |
first_indexed | 2025-02-19T03:11:58Z |
format | Journal Article |
id | ntu-10356/89856 |
institution | Nanyang Technological University |
language | English |
last_indexed | 2025-02-19T03:11:58Z |
publishDate | 2019 |
record_format | dspace |
spelling | ntu-10356/898562020-03-07T14:02:36Z Efficient visible light modulation based on electrically tunable all dielectric metasurfaces embedded in thin-layer nematic liquid crystals Sun, Mingyu Xu, Xuewu Sun, Xiao Wei Liang, Xin’an Valuckas, Vytautas Zheng, Yuanjin Paniagua-Domínguez, Ramón Kuznetsov, Arseniy I. School of Electrical and Electronic Engineering Liquid Crystals Metamaterials Engineering::Electrical and electronic engineering All-dielectric metasurfaces have attracted attention for highly efficient visible light manipulation. So far, however, they are mostly passive devices, while those allowing dynamic control remain a challenge. A highly efficient tuning mechanism is immersing the metasurface in a birefringent liquid crystal (LC), whose refractive index can be electrically controlled. Here, an all-dielectric tunable metasurface is demonstrated based on this concept, operating at visible frequencies and based on TiO2 nanodisks embedded in a thin LC layer. Small driving voltages from 3~5 V are sufficient to tune the metasurface resonances, with an associated transmission modulation of more than 65%. The metasurface optical responses, including the observed electric and magnetic dipole resonance shifts as well as the interfacial anchoring effect of the LC induced by the presence of the nanostructures, are systematically discussed. The dynamic tuning observed in the transmission spectra can pave the way to dynamically tunable metasurface devices for efficient visible light modulation applications. NRF (Natl Research Foundation, S’pore) ASTAR (Agency for Sci., Tech. and Research, S’pore) Published version 2019-07-12T05:41:36Z 2019-12-06T17:35:09Z 2019-07-12T05:41:36Z 2019-12-06T17:35:09Z 2019 Journal Article Sun, M., Xu, X., Sun, X. W., Liang, X., Valuckas, V., Zheng, Y., . . . Kuznetsov, A. I. (2019). Efficient visible light modulation based on electrically tunable all dielectric metasurfaces embedded in thin-layer nematic liquid crystals. Scientific Reports, 9(1), 8673-. doi:10.1038/s41598-019-45091-5 https://hdl.handle.net/10356/89856 http://hdl.handle.net/10220/49331 10.1038/s41598-019-45091-5 en Scientific Reports © 2019 The Author(s). This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. Te images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. 9 p. application/pdf |
spellingShingle | Liquid Crystals Metamaterials Engineering::Electrical and electronic engineering Sun, Mingyu Xu, Xuewu Sun, Xiao Wei Liang, Xin’an Valuckas, Vytautas Zheng, Yuanjin Paniagua-Domínguez, Ramón Kuznetsov, Arseniy I. Efficient visible light modulation based on electrically tunable all dielectric metasurfaces embedded in thin-layer nematic liquid crystals |
title | Efficient visible light modulation based on electrically tunable all dielectric metasurfaces embedded in thin-layer nematic liquid crystals |
title_full | Efficient visible light modulation based on electrically tunable all dielectric metasurfaces embedded in thin-layer nematic liquid crystals |
title_fullStr | Efficient visible light modulation based on electrically tunable all dielectric metasurfaces embedded in thin-layer nematic liquid crystals |
title_full_unstemmed | Efficient visible light modulation based on electrically tunable all dielectric metasurfaces embedded in thin-layer nematic liquid crystals |
title_short | Efficient visible light modulation based on electrically tunable all dielectric metasurfaces embedded in thin-layer nematic liquid crystals |
title_sort | efficient visible light modulation based on electrically tunable all dielectric metasurfaces embedded in thin layer nematic liquid crystals |
topic | Liquid Crystals Metamaterials Engineering::Electrical and electronic engineering |
url | https://hdl.handle.net/10356/89856 http://hdl.handle.net/10220/49331 |
work_keys_str_mv | AT sunmingyu efficientvisiblelightmodulationbasedonelectricallytunablealldielectricmetasurfacesembeddedinthinlayernematicliquidcrystals AT xuxuewu efficientvisiblelightmodulationbasedonelectricallytunablealldielectricmetasurfacesembeddedinthinlayernematicliquidcrystals AT sunxiaowei efficientvisiblelightmodulationbasedonelectricallytunablealldielectricmetasurfacesembeddedinthinlayernematicliquidcrystals AT liangxinan efficientvisiblelightmodulationbasedonelectricallytunablealldielectricmetasurfacesembeddedinthinlayernematicliquidcrystals AT valuckasvytautas efficientvisiblelightmodulationbasedonelectricallytunablealldielectricmetasurfacesembeddedinthinlayernematicliquidcrystals AT zhengyuanjin efficientvisiblelightmodulationbasedonelectricallytunablealldielectricmetasurfacesembeddedinthinlayernematicliquidcrystals AT paniaguadominguezramon efficientvisiblelightmodulationbasedonelectricallytunablealldielectricmetasurfacesembeddedinthinlayernematicliquidcrystals AT kuznetsovarseniyi efficientvisiblelightmodulationbasedonelectricallytunablealldielectricmetasurfacesembeddedinthinlayernematicliquidcrystals |