Steady state heat transfer within a nanoscale spatial domain

In this paper, we study the steady state heat transfer process within a spatial domain of the transporting medium whose length is of the same order as the distance, travelled by thermal waves before these waves are dissipated by thermal diffusion. In this study, the thermal conductivity is defined a...

Full description

Bibliographic Details
Main Authors: Poletkin, Kirill V., Kulish, Vladimir.
Other Authors: School of Mechanical and Aerospace Engineering
Format: Journal Article
Language:English
Published: 2012
Subjects:
Online Access:https://hdl.handle.net/10356/90408
http://hdl.handle.net/10220/8164
Description
Summary:In this paper, we study the steady state heat transfer process within a spatial domain of the transporting medium whose length is of the same order as the distance, travelled by thermal waves before these waves are dissipated by thermal diffusion. In this study, the thermal conductivity is defined as a function of a spatial variable. This is achieved by analyzing an effective thermal diffusivity that is used to match the transient temperature behavior in the case of heat wave propagation by the result obtained from the Fourier theory. Then, combining the defined sizedependent thermal conductivity with Fourier’s law allows us to study the behavior of the heat flux at nanoscale and predict that a decrease of the size of the transporting medium leads to an increase of the heat transfer coefficient which reaches its finite maximal value, contrary to the infinite value predicted by the classical theory. The upper limit value of the heat transfer coefficient is proportional to the ratio of the bulk value of the thermal conductivity to the characteristic length of thermal waves in the transporting medium.