A robust nonconforming H-2-element
Finite element methods for some elliptic fourth order singular perturbation problems are discussed. We show that if such problems are discretized by the nonconforming Morley method, in a regime close to second order elliptic equations, then the error deteriorates. In fact, a counterexample is given...
Main Authors: | , , |
---|---|
Other Authors: | |
Format: | Journal Article |
Language: | English |
Published: |
2009
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/91499 http://hdl.handle.net/10220/6056 http://sfxna09.hosted.exlibrisgroup.com:3410/ntu/sfxlcl3?sid=metalib:ELSEVIER_SCOPUS&id=doi:&genre=&isbn=&issn=&date=2001&volume=70&issue=234&spage=489&epage=505&aulast=Nilssen&aufirst=%20T%20K&auinit=&title=Mathematics%20of%20Computation&atitle=A%20robust%20nonconforming%20H. |
_version_ | 1811696785928749056 |
---|---|
author | Nilssen, Trygve K. Tai, Xue Cheng Winther, Ragnar |
author2 | School of Physical and Mathematical Sciences |
author_facet | School of Physical and Mathematical Sciences Nilssen, Trygve K. Tai, Xue Cheng Winther, Ragnar |
author_sort | Nilssen, Trygve K. |
collection | NTU |
description | Finite element methods for some elliptic fourth order singular perturbation problems are discussed. We show that if such problems are discretized by the nonconforming Morley method, in a regime close to second order elliptic equations, then the error deteriorates. In fact, a counterexample is given to show that the Morley method diverges for the reduced second order equation. As an alternative to the Morley element we propose to use a nonconforming H-2-element which is H-1-conforming. We show that the new finite element method converges in the energy norm uniformly in the perturbation parameter. |
first_indexed | 2024-10-01T07:44:53Z |
format | Journal Article |
id | ntu-10356/91499 |
institution | Nanyang Technological University |
language | English |
last_indexed | 2024-10-01T07:44:53Z |
publishDate | 2009 |
record_format | dspace |
spelling | ntu-10356/914992023-02-28T19:37:34Z A robust nonconforming H-2-element Nilssen, Trygve K. Tai, Xue Cheng Winther, Ragnar School of Physical and Mathematical Sciences DRNTU::Science::Mathematics::Applied mathematics::Numerical analysis Finite element methods for some elliptic fourth order singular perturbation problems are discussed. We show that if such problems are discretized by the nonconforming Morley method, in a regime close to second order elliptic equations, then the error deteriorates. In fact, a counterexample is given to show that the Morley method diverges for the reduced second order equation. As an alternative to the Morley element we propose to use a nonconforming H-2-element which is H-1-conforming. We show that the new finite element method converges in the energy norm uniformly in the perturbation parameter. Published version 2009-08-12T03:16:58Z 2019-12-06T18:06:46Z 2009-08-12T03:16:58Z 2019-12-06T18:06:46Z 2000 2000 Journal Article Nilssen, T. K., Tan, X. C., & Winther R.(2000). A robust nonconforming H-2-element. Mathematics of Computation, 70(234), 489-505. 0025-5718 https://hdl.handle.net/10356/91499 http://hdl.handle.net/10220/6056 http://sfxna09.hosted.exlibrisgroup.com:3410/ntu/sfxlcl3?sid=metalib:ELSEVIER_SCOPUS&id=doi:&genre=&isbn=&issn=&date=2001&volume=70&issue=234&spage=489&epage=505&aulast=Nilssen&aufirst=%20T%20K&auinit=&title=Mathematics%20of%20Computation&atitle=A%20robust%20nonconforming%20H. 10.1090/S0025-5718-00-01230-8 en Mathematics of Computation. Mathematics of Computation © copyright 2000 American Mathematical Society. The journal's website is located at http://www.ams.org/mcom/. 17 p. application/pdf |
spellingShingle | DRNTU::Science::Mathematics::Applied mathematics::Numerical analysis Nilssen, Trygve K. Tai, Xue Cheng Winther, Ragnar A robust nonconforming H-2-element |
title | A robust nonconforming H-2-element |
title_full | A robust nonconforming H-2-element |
title_fullStr | A robust nonconforming H-2-element |
title_full_unstemmed | A robust nonconforming H-2-element |
title_short | A robust nonconforming H-2-element |
title_sort | robust nonconforming h 2 element |
topic | DRNTU::Science::Mathematics::Applied mathematics::Numerical analysis |
url | https://hdl.handle.net/10356/91499 http://hdl.handle.net/10220/6056 http://sfxna09.hosted.exlibrisgroup.com:3410/ntu/sfxlcl3?sid=metalib:ELSEVIER_SCOPUS&id=doi:&genre=&isbn=&issn=&date=2001&volume=70&issue=234&spage=489&epage=505&aulast=Nilssen&aufirst=%20T%20K&auinit=&title=Mathematics%20of%20Computation&atitle=A%20robust%20nonconforming%20H. |
work_keys_str_mv | AT nilssentrygvek arobustnonconformingh2element AT taixuecheng arobustnonconformingh2element AT wintherragnar arobustnonconformingh2element AT nilssentrygvek robustnonconformingh2element AT taixuecheng robustnonconformingh2element AT wintherragnar robustnonconformingh2element |