Synthesis and structure characterization of ternary Zn2GeO4 nanowires by chemical vapor transport
Ternary Zn2GeO4 nanowires and their branched structures were successfully synthesized by a chemical vapor transport method. The nanowires showed a rhombohedral crystal phase with dominant growth direction along [110]. The branches exhibited preferential growth directions, which are perpendicular to...
Main Authors: | , |
---|---|
Other Authors: | |
Format: | Journal Article |
Language: | English |
Published: |
2012
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/94307 http://hdl.handle.net/10220/8499 |
Summary: | Ternary Zn2GeO4 nanowires and their branched structures were successfully synthesized by a chemical vapor transport method. The nanowires showed a rhombohedral crystal phase with dominant growth direction along [110]. The branches exhibited preferential growth directions, which are perpendicular to the backbone due to homoepitaxial growth. The nanowire growth process was explained using vapor−liquid−solid mechanism with Au as catalysts. The present catalytic growth method may offer better control of the morphologies and structures of the Zn2GeO4 nanowires, promoting further study of their properties and applications. |
---|