Dynamical systems guided design and analysis of silicon oscillators for central pattern generators
In this paper, a dynamical systems (DS) approach is proposed for the analysis and design of bio-inspired silicon central pattern generator (CPG) systems. Based on this approach, a new leaky-integrate-and-leaky-discharge oscillator circuit is proposed that has dynamical properties closer to biologica...
Main Authors: | , , , |
---|---|
Other Authors: | |
Format: | Journal Article |
Language: | English |
Published: |
2013
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/95893 http://hdl.handle.net/10220/11458 |
_version_ | 1811697612169936896 |
---|---|
author | Cohen, Avis H. Li, Fei Basu, Arindam Chang, Chip Hong |
author2 | School of Electrical and Electronic Engineering |
author_facet | School of Electrical and Electronic Engineering Cohen, Avis H. Li, Fei Basu, Arindam Chang, Chip Hong |
author_sort | Cohen, Avis H. |
collection | NTU |
description | In this paper, a dynamical systems (DS) approach is proposed for the analysis and design of bio-inspired silicon central pattern generator (CPG) systems. Based on this approach, a new leaky-integrate-and-leaky-discharge oscillator circuit is proposed that has dynamical properties closer to biological half-center oscillators while being power and area efficient. The membrane potential charges and discharges through a single resistor eliminating mismatch in charging and discharging phases. Switched-capacitor (SC) and floating-gate wide input linear range operational transconductance amplifier (FGOTA) based approaches have been proposed to implement the resistor. Both approaches enable controllable and large resistances in a small area. Oscillation frequency can be easily controlled by the frequency of switching in SC based and bias current in FGOTA based implementations, which are very useful for global change of oscillation frequency in an array of oscillators. Dynamical systems analysis has shown that when it is used as a single oscillator, the proposed circuit is able to produce a phase response curve (PRC) close to that of a lamprey CPG system. By applying averaging theory to a system of coupled oscillators, the averaged H and G functions for unidirectional and bidirectional coupling cases are obtained. Analysis of these functions shows our circuit's superior capability to achieve entrainment when driven by a periodic input (e.g., from sensory feedback) and reach equilibrium even with high frequency mismatch. |
first_indexed | 2024-10-01T07:58:01Z |
format | Journal Article |
id | ntu-10356/95893 |
institution | Nanyang Technological University |
language | English |
last_indexed | 2024-10-01T07:58:01Z |
publishDate | 2013 |
record_format | dspace |
spelling | ntu-10356/958932020-03-07T14:02:45Z Dynamical systems guided design and analysis of silicon oscillators for central pattern generators Cohen, Avis H. Li, Fei Basu, Arindam Chang, Chip Hong School of Electrical and Electronic Engineering DRNTU::Engineering::Electrical and electronic engineering In this paper, a dynamical systems (DS) approach is proposed for the analysis and design of bio-inspired silicon central pattern generator (CPG) systems. Based on this approach, a new leaky-integrate-and-leaky-discharge oscillator circuit is proposed that has dynamical properties closer to biological half-center oscillators while being power and area efficient. The membrane potential charges and discharges through a single resistor eliminating mismatch in charging and discharging phases. Switched-capacitor (SC) and floating-gate wide input linear range operational transconductance amplifier (FGOTA) based approaches have been proposed to implement the resistor. Both approaches enable controllable and large resistances in a small area. Oscillation frequency can be easily controlled by the frequency of switching in SC based and bias current in FGOTA based implementations, which are very useful for global change of oscillation frequency in an array of oscillators. Dynamical systems analysis has shown that when it is used as a single oscillator, the proposed circuit is able to produce a phase response curve (PRC) close to that of a lamprey CPG system. By applying averaging theory to a system of coupled oscillators, the averaged H and G functions for unidirectional and bidirectional coupling cases are obtained. Analysis of these functions shows our circuit's superior capability to achieve entrainment when driven by a periodic input (e.g., from sensory feedback) and reach equilibrium even with high frequency mismatch. Accepted version 2013-07-15T08:05:25Z 2019-12-06T19:23:01Z 2013-07-15T08:05:25Z 2019-12-06T19:23:01Z 2012 2012 Journal Article Li, F., Basu, A., Chang, C. H., & Cohen, A. H. (2012). Dynamical systems guided design and analysis of silicon oscillators for central pattern generators. IEEE transactions on circuits and systems I : regular papers, 59(12), 3046-3059. https://hdl.handle.net/10356/95893 http://hdl.handle.net/10220/11458 10.1109/TCSI.2012.2206433 en IEEE transactions on circuits and systems I : regular papers © 2012 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. The published version is available at: [http://dx.doi.org/10.1109/TCSI.2012.2206433]. application/pdf |
spellingShingle | DRNTU::Engineering::Electrical and electronic engineering Cohen, Avis H. Li, Fei Basu, Arindam Chang, Chip Hong Dynamical systems guided design and analysis of silicon oscillators for central pattern generators |
title | Dynamical systems guided design and analysis of silicon oscillators for central pattern generators |
title_full | Dynamical systems guided design and analysis of silicon oscillators for central pattern generators |
title_fullStr | Dynamical systems guided design and analysis of silicon oscillators for central pattern generators |
title_full_unstemmed | Dynamical systems guided design and analysis of silicon oscillators for central pattern generators |
title_short | Dynamical systems guided design and analysis of silicon oscillators for central pattern generators |
title_sort | dynamical systems guided design and analysis of silicon oscillators for central pattern generators |
topic | DRNTU::Engineering::Electrical and electronic engineering |
url | https://hdl.handle.net/10356/95893 http://hdl.handle.net/10220/11458 |
work_keys_str_mv | AT cohenavish dynamicalsystemsguideddesignandanalysisofsiliconoscillatorsforcentralpatterngenerators AT lifei dynamicalsystemsguideddesignandanalysisofsiliconoscillatorsforcentralpatterngenerators AT basuarindam dynamicalsystemsguideddesignandanalysisofsiliconoscillatorsforcentralpatterngenerators AT changchiphong dynamicalsystemsguideddesignandanalysisofsiliconoscillatorsforcentralpatterngenerators |