Cognitively inspired classification for adapting to data distribution changes

In pattern classification, the test data is expected to lie in the domain covered by the training data. But in practical scenarios, this may not necessarily be true. To improve the adaptability, the classifier should be able to generalize well even when there are changes in the input distribution. T...

Descripció completa

Dades bibliogràfiques
Autors principals: Sit, Wing Yee, Mao, K. Z.
Altres autors: School of Electrical and Electronic Engineering
Format: Conference Paper
Idioma:English
Publicat: 2013
Matèries:
Accés en línia:https://hdl.handle.net/10356/96469
http://hdl.handle.net/10220/11982

Ítems similars