Cognitively inspired classification for adapting to data distribution changes
In pattern classification, the test data is expected to lie in the domain covered by the training data. But in practical scenarios, this may not necessarily be true. To improve the adaptability, the classifier should be able to generalize well even when there are changes in the input distribution. T...
Principais autores: | Sit, Wing Yee, Mao, K. Z. |
---|---|
Outros Autores: | School of Electrical and Electronic Engineering |
Formato: | Conference Paper |
Idioma: | English |
Publicado em: |
2013
|
Assuntos: | |
Acesso em linha: | https://hdl.handle.net/10356/96469 http://hdl.handle.net/10220/11982 |
Registros relacionados
-
A cognitively inspired rule-plus-exemplar framework for interpretable pattern classification
por: Sit, Wing Yee, et al.
Publicado em: (2014) -
Cognitively inspired rule-plus-exemplar based pattern classification
por: Sit, Wing Yee
Publicado em: (2014) -
Adaptive fuzzy rule-based classification system integrating both expert knowledge and data
por: Ng, Gee Wah, et al.
Publicado em: (2013) -
Cognitive-inspired domain adaptation of sentiment lexicons
por: Xing, Frank Z., et al.
Publicado em: (2021) -
Biologically-inspired spectrum sharing for cognitive radio
por: Li, Guang Fu.
Publicado em: (2010)