Cognitively inspired classification for adapting to data distribution changes

In pattern classification, the test data is expected to lie in the domain covered by the training data. But in practical scenarios, this may not necessarily be true. To improve the adaptability, the classifier should be able to generalize well even when there are changes in the input distribution. T...

ver descrição completa

Detalhes bibliográficos
Principais autores: Sit, Wing Yee, Mao, K. Z.
Outros Autores: School of Electrical and Electronic Engineering
Formato: Conference Paper
Idioma:English
Publicado em: 2013
Assuntos:
Acesso em linha:https://hdl.handle.net/10356/96469
http://hdl.handle.net/10220/11982

Registros relacionados