An analysis of vector Taylor series model compensation for non-stationary noise in speech recognition
In this paper, we investigate a feature conditioning method for the VTS-based model compensation. The VTS is a technique that predicts noisy acoustic model from clean acoustic model and noise model. It is noted that most of the previous studies use a single Gaussian noise model, which is unable to m...
Những tác giả chính: | Li, Haizhou, Nguyen, Duc Hoang Ha, Xiao, Xiong, Chng, Eng Siong |
---|---|
Tác giả khác: | School of Computer Engineering |
Định dạng: | Conference Paper |
Ngôn ngữ: | English |
Được phát hành: |
2013
|
Những chủ đề: | |
Truy cập trực tuyến: | https://hdl.handle.net/10356/97488 http://hdl.handle.net/10220/11868 |
Những quyển sách tương tự
-
Joint spectral and temporal normalization of features for robust recognition of noisy and reverberated speech
Bằng: Xiao, Xiong, et al.
Được phát hành: (2013) -
Lasso environment model combination for robust speech recognition
Bằng: Xiao, Xiong, et al.
Được phát hành: (2013) -
Feature Adaptation Using Linear Spectro-Temporal Transform for Robust Speech Recognition
Bằng: Nguyen, Duc Hoang Ha, et al.
Được phát hành: (2016) -
An investigation of spoofing speech detection under additive noise and reverberant conditions
Bằng: Tian, Xiaohai, et al.
Được phát hành: (2019) -
Cross-lingual phone mapping for large vocabulary speech recognition of under-resourced languages
Bằng: Do, Van Hai, et al.
Được phát hành: (2014)